精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=x+ax2+blnx,曲线y=f(x)过P(1,0),且在点P处的切线斜率为2
(1)求实数a,b的值;
(2)求函数g(x)=f(x)-2x+2的极值.

分析 (1)求导f′(x)=1+2ax+$\frac{b}{x}$,从而可得$\left\{\begin{array}{l}{f(1)=1+a=0}\\{f′(1)=1+2a+b=2}\end{array}\right.$,从而解得;
(2)化简g(x)=-x2-x+3lnx+2,再求导g′(x)=$\frac{-(x-1)(2x+3)}{x}$,从而判断函数的单调性并求极值即可.

解答 解:(1)∵f(x)=x+ax2+blnx,
∴f′(x)=1+2ax+$\frac{b}{x}$,
∴$\left\{\begin{array}{l}{f(1)=1+a=0}\\{f′(1)=1+2a+b=2}\end{array}\right.$,
解得,a=-1,b=3.
(2)g(x)=f(x)-2x+2=-x2-x+3lnx+2,
g′(x)=-2x-1+$\frac{3}{x}$=$\frac{-(x-1)(2x+3)}{x}$,
故g(x)在(0,1)上是增函数,在(1,+∞)上是减函数;
故函数g(x)=f(x)-2x+2有极大值f(1)=0,无极小值.

点评 本题考查了导数的几何意义的应用及导数的综合应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知三角形△ABC中,角A,B,C的对边分别为a,b,c,若a=5,b=8,C=60°,则$\overrightarrow{BC}•\overrightarrow{AC}$=(  )
A.$-20\sqrt{3}$B.-20C.20D.$20\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某人练习射击,共有5发子弹,每次击中目标的概率为0.6,若他只需要在五次射击中四次击中目标就算合格,一旦合格即停止练习.则他在第五次射击结束时恰好合格的概率为(  )
A.0.64×0.4B.C${\;}_{5}^{4}$•0.64•(1-0.6)+C${\;}_{5}^{5}$•0.65
C.0.64D.C${\;}_{4}^{3}$×0.64×0.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求下列函数的值域.
(1)y=$\frac{1-{x}^{2}}{1+{x}^{2}}$;
(2)y=2x+$\sqrt{1-x}$;
(3)y=2x+$\sqrt{1-{x}^{2}}$;
(4)y=$\frac{{x}^{2}-2x+5}{x-1}$;
(5)若x,y满足3x2+2y2=6x,求函数z=x2+y2的值域;
(6)f(x)=|2x+1|-|x-4|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知:$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$都为单位向量,其中$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,则$\sqrt{1-\overrightarrow{a}•\overrightarrow{c}}$+$\sqrt{1-\overrightarrow{b}•\overrightarrow{c}}$的范围是[$\frac{\sqrt{6}}{2}$,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.四个小动物换座位,开始是猴、兔、猫、鼠分别坐在1、2、3、4号位置上(如图),第1次前后排动物互换位置,第2次左右列互换座位,…这样交替进行下去,那么第2014次互换座位后,小兔的位置对应的是(  )
A.编号1 (开始)B.编号2  (第1次)C.编号3 (第2次)D.编号4(第3次)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ln(1+x)-x+$\frac{k}{2}$x2(k≥0).当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.对于任一实数序列A={a1,a2,a3,…},定义DA为序列{a2-a1,a3-a2,…},它的第n项为an+1-an,假设序列D(DA)的所有项均为1,且a19=a92=0,则a1=819.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在三角形ABC中,三个内角所对的边为a,b,c,如果A:B:C=1:2:3,那么a:b:c=(  )
A.1:2:3B.1:$\sqrt{3}$:2C.1:4:9D.1:$\sqrt{2}$:$\sqrt{3}$

查看答案和解析>>

同步练习册答案