精英家教网 > 高中数学 > 题目详情
17.sin72°sin42°+cos72°cos42°=$\frac{\sqrt{3}}{2}$.

分析 由两角差的余弦公式和特殊角的三角函数可得.

解答 解:由题意可得sin72°sin42°+cos72°cos42°
=cos72°cos42°+sin72°sin42°
=cos(72°-42°)
=cos30°=$\frac{\sqrt{3}}{2}$
故答案为:$\frac{\sqrt{3}}{2}$

点评 本题考查两角差的余弦公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x-3|-|x+1|.
(1)解不等式f(x)>1;
(2)若f(x)≥|x+a|的解集包含[-2,-1],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某中学对高二甲、乙两个同类班级,进行“加强‘语文阅读理解’训练,对提高‘数学应用题’得分率作用”的试验,其中甲班为试验班(加强语文阅读理解训练),乙班为对比班(常规教学,无额外训练),在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致,试验结束后,统计几次数学应用题测试的平均成绩(均取整数)如下表所示:
60分以下61~70分71~80分81~90分91~100分
甲班(人数)36111812
乙班(人数)713101010
现规定平均成绩在80分以上(不含80分)的为优秀.
(Ⅰ)试分析估计两个班级的优秀率;
(Ⅱ)由以上统计数据填写下面2×2列联表,并问“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”是否有帮助.
优秀人数非优秀人数合计
甲班
乙班
合计
参考公式及数据:${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,
P(Χ2≥k00.500.400.250.150.10
k00.4550.7081.3232.0722.706
P(Χ2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.sin600°=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=2.
(1)求证:CD⊥SA;
(2)求二面角C-SA-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知:平面向量$\overrightarrow{a}$=(sinα,1),$\overrightarrow{b}$=(1,cosα),-$\frac{π}{2}$<α<$\frac{π}{2}$.
(Ⅰ)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,求:α;      
(Ⅱ)求:|$\overrightarrow{a}$+$\overrightarrow{b}$|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C的对称轴为坐标轴,焦点F1,F2在x轴上,离心率e=$\frac{1}{2}$,圆x2+y2-2$\sqrt{3}$y-6=0的圆心E恰好是该椭圆的一个顶点.
(1)求椭圆C的方程;
(2)过点P(4,0)且不垂直于x轴直线l与椭圆C相交于不同的A,B两点,设点B关于x轴的对称点为G.
①求$\overrightarrow{OA}•\overrightarrow{OB}$的取值范围;
②证明:直线AG与x轴相交于一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知设Sn为等比数列{an}的前n项和,S4=5S2,求$\frac{{a}_{2}•{a}_{7}}{{a}_{{4}^{2}}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图是一个空间几何体的三视图,该几何体的外接球的体积为(  )
A.8$\sqrt{2}$B.$\frac{8\sqrt{2}π}{3}$C.4$\sqrt{2}$πD.$\frac{16\sqrt{2}π}{3}$

查看答案和解析>>

同步练习册答案