精英家教网 > 高中数学 > 题目详情
1.已知a=log0.50.4,b=$(\frac{1}{2})^{\frac{1}{2}}$,c=($\frac{1}{3}$)${\;}^{\frac{1}{3}}$则a,b,c的大小关系是(  )
A.a>c>bB.b>a>cC.c>b>aD.a>b>c

分析 利用对数的运算性质可得a>1,化分数指数幂为根式可得c<b<1,由此得到a,b,c的大小.

解答 解:∵a=log0.50.4>log0.50.5=1,
b=$(\frac{1}{2})^{\frac{1}{2}}$<$(\frac{1}{2})^{0}=1$,c=$(\frac{1}{3})^{\frac{1}{3}}<(\frac{1}{3})^{0}=1$,
且b=$(\frac{1}{2})^{\frac{1}{2}}$=$\sqrt{\frac{1}{2}}$=$\root{6}{\frac{1}{8}}$>c=$(\frac{1}{3})^{\frac{1}{3}}=\root{3}{\frac{1}{3}}$=$\root{6}{\frac{1}{9}}$,
∴a>b>c.
故选:D.

点评 本题考查对数值的大小比较,考查了对数的运算性质,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.在三个数$\frac{1}{2},{2^{-\frac{1}{2}}}.{log_3}$2中,最小的数是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=x2-2,对?x1∈[1,2],?x2∈[3,4],若f(x2)+a≥|f(x1)|恒成立,则实数a的取值范围是[-12,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,已知a=2,B=45°,cosA=-$\frac{3}{5}$.
(1)求b、c边的长;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若a,b都是不等于1的正数,则“loga2>logb2”是“2a>2b”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.非充分非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,边a、b、c分别是内角A、B、C所对的边,且满足2sinB=sinA+sinC,设B的最大值为B0
(1)求B0的值;
(2)当B=B0,a=3,b=6时,又$\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{DB}$,求CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若复数z满足$\frac{z}{1-i}=i$,其中i为复数单位,则z=(  )
A.1-iB.1+iC.-1-iD.-1+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量的集合A={$\overrightarrow{m}$|$\overrightarrow{m}$=(x,y),x2+y2≤1}中的任意两个向量$\overrightarrow{{m}_{1}}$,$\overrightarrow{{m}_{2}}$与两个非负实数a,b,那么|a$\overrightarrow{{m}_{1}}$+b$\overrightarrow{{m}_{2}}$|与a+b的关系为(  )
A.|a$\overrightarrow{{m}_{1}}$+b$\overrightarrow{{m}_{2}}$|>a+bB.|a$\overrightarrow{{m}_{1}}$+b$\overrightarrow{{m}_{2}}$|≤a+bC.|a$\overrightarrow{{m}_{1}}$+b$\overrightarrow{{m}_{2}}$|≥a+bD.|a$\overrightarrow{{m}_{1}}$+b$\overrightarrow{{m}_{2}}$|<a+b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若直线mx-y-1=0与直线x-2y+3=0垂直,则m的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.2D.-2

查看答案和解析>>

同步练习册答案