精英家教网 > 高中数学 > 题目详情
已知函数f(x)在x=x0处可导,则“f′(x0)=0”是“x=x0是f(x)的极值点”的(  )
A、充分必要条件
B、必要不充分条件
C、充分不必要条件
D、既不充分也不必要条件
考点:必要条件、充分条件与充要条件的判断
专题:导数的概念及应用,简易逻辑
分析:根据可导函数的极值和导数之间的关系,利用充分条件和必要条件的定义即可得到结论.
解答: 解:已知函数f(x)=x3的导数为f'(x)=3x2,由f′(x0)=0,得x0=0,但此时函数f(x)单调递增,无极值,充分性不成立.
根据极值的定义和性质,若x=x0是f(x)的极值点,则f′(x0)=0成立,即必要性成立,
故p是q的必要不充分条件,
故选:B.
点评:本题主要考查充分条件和必要条件的判断,利用函数单调性和极值之间的关系是解决本题的关键,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某汽车制造厂为了检测A,B两种轮胎的性能,分别从这两种轮胎中随机抽取8个进行测试,下面记录的是每个轮胎行驶的最远路程数(单位:100km);
轮胎A:96,112,97,108,100,103,86,98;
轮胎B:108,101,94,105,96,93,97,106.
(1)分别计算A,B两种轮胎行驶最远路程的平均数、极差;
(2)比较A,B两种轮胎的性能,估计哪一种较为稳定.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知an=3×2n,证明:{an}是等比数列.(需要用定义证明)
(2)已知an=3×2n,bn=5×3n,证明:{an×bn}是等比数列.(不需要用定义证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,cosA=
3
5
,cosB=-
5
13
,则sin(A+B)=(  )
A、-
16
65
B、
16
65
C、
56
65
D、
33
65

查看答案和解析>>

科目:高中数学 来源: 题型:

一组正数x1,x2,…,x6的方差S2=
1
6
(x12+x22+…+x62-54),则数据2x1-1,2x2-1…,2x6-1的平均数是(  )
A、17B、7C、5D、19

查看答案和解析>>

科目:高中数学 来源: 题型:

将原油精炼为汽油、柴油、塑胶等各种不同需要对原油进行冷却和加热,如果在第r h 时,原油的温度(单位:℃)为y=f(x)=x2-7x+15(0≤x≤8).计算第2h与第6h时,原油温度的瞬时变化率,并说明它们的意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别是△ABC的三个内角,A,B,C所对的边,若a=3,C=120°,△ABC的面积S=
15
3
4
,则c为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(-2,2),
b
=(2,1),
c
=(2,-1),t∈R.
(1)若(t
a
+
b
)∥
c
,求t的值;
(2)若|
a
-t
b
|=3,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直线 P A切圆 O于点 A,直线 P O交圆 O于点 B、C,若PC=2+
3
,P A=1,则圆 O的半径长为
 

查看答案和解析>>

同步练习册答案