精英家教网 > 高中数学 > 题目详情
已知tanθ=2,求
sinθ-cosθ
2sinθ+3cosθ
的值.
考点:三角函数的化简求值
专题:三角函数的求值
分析:直接利用同角三角函数的基本关系式,化简是表达式为正切函数的形式,然后求解即可.
解答: 解:tanθ=2,
sinθ-cosθ
2sinθ+3cosθ
=
tanθ-1
2tanθ+3
=
2-1
2×2+3
=
1
7

故答案为:
1
7
点评:本题考查同角三角函数的基本关系式的应用,三角函数的化简求值,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知方程x2+x+p=0(p∈R)的两个根是x1,x2,若|x1|+|x2|=3,求p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若对于正整数k,g(k)表示k的最大奇数因数,例如g(3)=3,g(10)=5.设Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n).
(1)则S2=
 
;(2)Sn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
16
-
y2
9
=1
上到定点(5,0)的距离是9的点的个数是(  )
A、0个B、2个C、3个D、4个.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y=2x2的准线方程是(  )
A、x=
1
2
B、y=
1
8
C、y=-
1
2
D、y=-
1
8

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
1
3
x3-x在(a,10-a2)上有最小值,则a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=
3
3
x2+
2
3
3
x-
3
与x轴相交于A,B两点(点B在点A的右侧),与y轴相交于点C.
(1)求证:△ABC为直角三角形;
(2)在抛物线的对称轴上,是否存在点M,使△BCM为等腰三角形?若存在,求点M的坐标;若不存在,请说明理由;
(3)如图2,若△OBC沿x轴以每秒1个单位向左平移,当点C正好移动到抛物线上时,停止移动,求移动过程中△OBC和△AOC重叠部分的面积S与时间t的函数关系式;
(4)把抛物线向上平移
2
3
3
个单位,然后再向右平移m个单位,若平移后抛物线的顶点恰好在△ABC内部,请直接写出m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数,且对任意x1、x2∈[1,a](a>1),当x1>x2时,都有f(x2)>f(x1)>0,则下列不等式不一定成立的是(  )
A、f(a)>f(0)
B、f(
1+a
2
)>f(
a
C、f(
1-3a
1+a
)<f(
a-3
1+a
D、f(
1-3a
1+a
)>f(-a)

查看答案和解析>>

科目:高中数学 来源: 题型:

判断直线t:y=x+b与圆C:x2+y2-2y-15=0有无公共点,若有,求出公共点的坐标.

查看答案和解析>>

同步练习册答案