精英家教网 > 高中数学 > 题目详情
20.若关于x的不等式$\frac{x-a}{x-b}>0$(a,b∈R)的解集为(-∞,1)∪(4,+∞),则a+b=5.

分析 求出a,b的值,从而求出a+b即可.

解答 解:若关于x的不等式$\frac{x-a}{x-b}>0$(a,b∈R)的解集为(-∞,1)∪(4,+∞),
则a=1,b=4或a=4,b=1,
则a+b=5,
故答案为:5.

点评 本题考查了不等式的解集问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=xlnx-\frac{a}{2}{x^2}+1$.
(1)若y=f(x)在(0,+∞)恒单调递减,求a的取值范围;
(2)若函数y=f(x)有两个极值点x1,x2(x1<x2),求a的取值范围并证明x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设全集U=Z,集合A={x|1≤x<7,x∈Z},B={x=2k-1,k∈Z},则A∩(∁UB)=(  )
A.{1,2,3,4,5,6}B.{1,3,5}C.{2,4,6}D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.方程x2+y2-4tx-2ty+3t2-4=0(t为参数)所表示的圆的圆心轨迹方程是x-2y=0(结果化为普通方程)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知△ABC中,AC=1,$∠ABC=\frac{2π}{3}$,设∠BAC=x,记$f(x)=\overrightarrow{AB}•\overrightarrow{BC}$;
(1)求函数f(x)的解析式及定义域;
(2)试写出函数f(x)的单调递增区间,并求方程$f(x)=\frac{1}{6}$的解.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.从单词“shadow”中任意选取4个不同的字母排成一排,则其中含有“a”的共有240种排法(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在Rt△AOB中,$∠OAB=\frac{π}{6}$,斜边AB=4,D是AB中点,现将Rt△AOB以
直角边AO为轴旋转一周得到一个圆锥,点C为圆锥底面圆周上一点,且∠BOC=90°,
(1)求圆锥的侧面积;
(2)求直线CD与平面BOC所成的角的大小;(用反三角函数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若命题p:(x-m)(x-m-2)≤0;命题q:|4x-3|≤1,且p是q的必要非充分条件,则实数m的取值范围是[-1,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列有关命题的说法正确的是(  )
A.命题:若x=y,则sinx=siny的逆否命题为真命题
B.x>2是x2-3x+2>0的必要不充分条件
C.命题:若x2=1,则x=1的否命题为“若x2=1,则x≠1”
D.命题:?x∈R使得x2+x+1<0的否定为:?x∈R均有x2+x+1<0

查看答案和解析>>

同步练习册答案