精英家教网 > 高中数学 > 题目详情
20.三棱柱ABC-A1B1C1的侧棱垂直底面,AC⊥BC,AC=BC=4,AA1=4.
(1)求证:AC⊥BC1
(2)求三棱柱ABC-A1B1C1的体积.

分析 (1)通过证明AC⊥平面BB1C1C得出结论;
(2)利用棱柱的体积公式计算.

解答 证明:(1)∵CC1⊥平面ABC,AC?平面ABC,
∴AC⊥CC1,又AC⊥BC,CC1?平面BB1C1C,BC?平面BB1C1C,CC1∩BC=C,
∴AC⊥平面BB1C1C,
∵BC1?平面BB1C1C,
∴AC⊥BC1
(2)三棱柱ABC-A1B1C1的体积V=S△ABC•AA1=$\frac{1}{2}×AC×BC×A{A}_{1}$=$\frac{1}{2}×4×4×4$=32.

点评 本题考查了线面垂直的判定与性质,棱柱的体积计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.圆柱的底面半径为3,侧面积为12π,则圆柱的体积为18π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2$\sqrt{3}$,cosA=$\frac{\sqrt{3}}{2}$,则b=2或4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的通项公式an=2n,设数列{bn}满足b1=$\frac{1}{2}$,$\frac{1}{b_n}$-$\frac{1}{{{b_{n-1}}}}$=1(n∈N*,n≥2)
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设cn=an($\frac{2}{b_n}$-1),求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设$\overrightarrow{a}$,$\overrightarrow{b}$是二个不共线向量,知$\overrightarrow{AB}$=2$\overrightarrow{a}$-8$\overrightarrow{b}$,$\overrightarrow{CB}$=$\overrightarrow{a}$+3$\overrightarrow{b}$,$\overrightarrow{CD}$=2$\overrightarrow{a}$-$\overrightarrow{b}$.
(1)证明:A、B、D三点共线;
(2)若$\overrightarrow{BF}$=4$\overrightarrow{a}$-k$\overrightarrow{b}$,且B、D、F三点共线,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=2sin(2x+$\frac{π}{4}$)的周期、振幅、初相分别是(  )
A.$\frac{π}{4}$,2,$\frac{π}{4}$B.π,-2,-$\frac{π}{4}$C.π,2,$\frac{π}{4}$D.2π,2,$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若x,y满足x2-2xy+3y2=4,则$\frac{1}{{x}^{2}+{y}^{2}}$最大值与最小值的和是(  )
A.$\frac{1}{2}$B.1C.$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.己知a是正实数,函数y=f(x)=2ax2+2x-3-a在区间[-1,1]上有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.计算下列函数的导数:
(1)y=$\frac{lnx}{x}$+sinx
(2)y=x2+$\sqrt{x}$-ex•cosx.

查看答案和解析>>

同步练习册答案