精英家教网 > 高中数学 > 题目详情
8.已知数列{an}的通项公式an=2n,设数列{bn}满足b1=$\frac{1}{2}$,$\frac{1}{b_n}$-$\frac{1}{{{b_{n-1}}}}$=1(n∈N*,n≥2)
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设cn=an($\frac{2}{b_n}$-1),求数列{cn}的前n项和Tn

分析 (1)由数列{bn}满足b1=$\frac{1}{2}$,$\frac{1}{b_n}$-$\frac{1}{{{b_{n-1}}}}$=1(n∈N*,n≥2,利用等差数列的通项公式即可得出.
(2)cn=an($\frac{2}{b_n}$-1)=(2n+1)•2n,利用“错位相减法”与等比数列的前n项和公式即可得出.

解答 解:(1)∵数列{bn}满足b1=$\frac{1}{2}$,$\frac{1}{b_n}$-$\frac{1}{{{b_{n-1}}}}$=1(n∈N*,n≥2),∴数列$\{\frac{1}{{b}_{n}}\}$是等差数列,首项为2,公差为1,∴$\frac{1}{{b}_{n}}$=2+(n-1)=n+1,
∴bn=$\frac{1}{n+1}$.
(2)cn=an($\frac{2}{b_n}$-1)=2n(2n+2-1)=(2n+1)•2n
∴数列{cn}的前n项和Tn=3×2+5×22+…+(2n+1)•2n
2Tn=3×22+5×23+…+(2n-1)•2n+(2n+1)•2n+1
∴-Tn=3×2+2(22+23+…+2n)-(2n+1)•2n+1=$2×\frac{2({2}^{n}-1)}{2-1}$+2-(2n+1)•2n+1=-2+(1-2n)×2n+1
∴Tn=(2n-1)2n+1+2.

点评 本题考查了“错位相减法”与等比数列的前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知关于x的不等式mx2+2x+6m>0,在下列条件下分别求m的值或取值范围:
(1)不等式的解集为{x|2<x<3};      
(2)不等式的解集为R.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.同时具有性质“①最小周期是π;②图象关于直线x=$\frac{π}{3}$对称;③在[$\frac{π}{6}$,$\frac{π}{3}$]上是增函数”的一个函数是(  )
A.y=sin(2x-$\frac{π}{6}$)B.y=cos(2x+$\frac{π}{3}$)C.y=sin($\frac{x}{2}$+$\frac{π}{6}$)D.y=cos(2x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆E的中心在原点,离心率为$\frac{\sqrt{6}}{3}$,右焦点到直线x+y+$\sqrt{2}$=0的距离为2.
(1)求椭圆E的方程;
(2)椭圆下顶点为A,直线y=kx+m(k≠0)与椭圆相交于不同的两点M、N,当|AM|=|AN|时,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.正三角形ABC中,D是线段BC上的点,AB=6,BD=2,则$\overrightarrow{AB}$•$\overrightarrow{AD}$=(  )
A.12B.18C.24D.30

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.过抛物线y2=2x的焦点F作直线交抛物线于A(x1,y1)、B(x2,y2)两点,若x1+x2=4,则|AB|=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.三棱柱ABC-A1B1C1的侧棱垂直底面,AC⊥BC,AC=BC=4,AA1=4.
(1)求证:AC⊥BC1
(2)求三棱柱ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知tanα=$\frac{1}{2}$,则sinαcosα的值为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.-$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知0<x<2,当x取什么值时,函数f(x)=$\sqrt{x(3-x)}$的值最大?最大值是多少?

查看答案和解析>>

同步练习册答案