【题目】在直角极坐标系
中,直线
的参数方程为
其中
为参数,其中
为
的倾斜角,且其中
,以坐标原点为极点,
轴的正半轴为极轴建立平面直角坐标系,曲线C1的极坐标方程
,曲线C2的极坐标方程
.
(1)求C1、C2的直角坐标方程;
(2)已知点P(-2,0),
与C1交于点
,与C2交于A,B两点,且
,求
的普通方程.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,以
为极点,
轴的非负半轴为极轴,建立极坐标系,曲线
的极坐标方程为
,直线
的参数方程为
为参数
,直线
与曲线
分别交于
两点.
(1)若点
的极坐标为
,求
的值;
(2)求曲线
的内接矩形周长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某年级100名学生期中考试数学成绩(单位:分)的频率分布直方图如图所示,其中成绩分组区间是[50,60),[60,70),[70,80),[80,90),[90,100].
![]()
(1)求图中a的值,并根据频率分布直方图估计这100名学生数学成绩的平均分;
(2)从[70,80)和[80,90)分数段内采用分层抽样的方法抽取5名学生,求在这两个分数段各抽取的人数;
(3)现从第(2)问中抽取的5名同学中任选2名参加某项公益活动,求选出的两名同学均来自[70,80)分数段内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:
![]()
则下面结论中不正确的是
A. 新农村建设后,种植收入减少
B. 新农村建设后,其他收入增加了一倍以上
C. 新农村建设后,养殖收入增加了一倍
D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
及圆
.
(1)若直线
过点
且与圆心
的距离为1,求直线
的方程;
(2)设过点
的直线
与圆
交于
两点,当
时,求以线段
为直径的圆
的方程;
(3)设直线
与圆
交于
两点,是否存在实数
,使得过点
的直线
垂直平分弦
?若存在,求出实数
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于
的一元二次函数![]()
(1)若
分别表示将一枚质地均匀的骰子先后抛掷两次时第一次、第二次正面朝上出现的点数,求满足函数
在区间[
上是增函数的概率;
(2)设点
是区域
内的随机点,求函数
在区间
上是增函数的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点为
,
为
上位于第一象限的任意一点,过点
的直线
交
于另一点
,交
轴的正半轴于点
.
(1)若当点
的横坐标为
,且
为等边三角形,求
的方程;
(2)对于(1)中求出的抛物线
,若点
,记点
关于
轴的对称点为
,
交
轴于点
,且
,求证:点
的坐标为
,并求点
到直线
的距离
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com