分析 (1)由6Sn=an2+3an+2,当n≥2时,6Sn-1=an-12+3an-1+2,an2-an-12=3an+3an-1,即(an+an-1)(an-an-1)=3(an+an-1),由an+an-1≠0,an-an-1=3,当n=1时,a1=2,根据等差数列的通项公式,即可求得数列{an}的通项公式;
(2)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(3n-1)(3n+2)}$=$\frac{1}{3}$($\frac{1}{3n-1}$-$\frac{1}{3n+2}$),利用“裂项相消求和法”即可求得数列{bn}的前n项和Tn.
解答 解:(1)由an2+3an=6Sn-2,即6Sn=an2+3an+2,
当n≥2时,6Sn-1=an-12+3an-1+2,
两式相减得:6an=an2-an-12+3an-3an-1,整理得:an2-an-12=3an+3an-1,
即(an+an-1)(an-an-1)=3(an+an-1),
∵数列{an}中各项都大于1,
∴an+an-1≠0,
∴an-an-1=3,
当n=1时,a12+3a1=6S1-2.解得:a1=2,
∴数列{an}是以2为首项,以3为公差的等差数列,
∴an=2+3(n-1)=3n-1,
∴数列{an}的通项公式an=3n-1;
(2)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(3n-1)(3n+2)}$=$\frac{1}{3}$($\frac{1}{3n-1}$-$\frac{1}{3n+2}$),
数列{bn}的前n项和Tn,Tn=b1+b2+b3+…+bn,
=$\frac{1}{3}$[($\frac{1}{2}$-$\frac{1}{5}$)+($\frac{1}{5}$-$\frac{1}{8}$)+…+($\frac{1}{3n-1}$-$\frac{1}{3n+2}$)]
=$\frac{1}{3}$($\frac{1}{2}$-$\frac{1}{3n+2}$)
=$\frac{n}{6n+4}$,
则Tn=$\frac{n}{6n+4}$.
点评 本题考查数列的通项公式的求法,考查数列的前n项和的求法及其应用,考查“裂项法”求数列的前n项和,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 与第几次抽样无关,每次抽中的可能性相等 | |
| B. | 与第几次抽样无关,第一次抽中的可能性要大些 | |
| C. | 与第几次抽样有关,最后一次抽中的可能性大些 | |
| D. | 与第几次抽样有关,虽然每次都是等可能的抽取,但各次抽取的可能性不一样 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(1,\sqrt{2})$ | B. | (1,2) | C. | $(\sqrt{2},\sqrt{3})$ | D. | $(\sqrt{3},2)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com