精英家教网 > 高中数学 > 题目详情
设函数f(x)=(x-1)ex-kx2(其中k∈R).
(Ⅰ)当k=
1
2
e时,求函数f(x)的单调区间;
(Ⅱ)当k∈(
1
2
,1]时,求函数f(x)在[0,k]上的最大值M.
考点:利用导数研究函数的单调性,利用导数求闭区间上函数的最值
专题:计算题,导数的综合应用
分析:(1)求导,由导数求单调区间;(2)求导,再求导,最终求出最大值M.
解答: 解:(Ⅰ) 当k=
1
2
e
时,f(x)=(x-1)ex-
1
2
ex2

f'(x)=ex+(x-1)ex-ex=x(ex-e),
令f′(x)=0,解得,x=0或x=1.
列表如下:
x(-∞,0)0(0,1)1(1,+∞)
f'(x)+0-0+
f(x)
右表可知,函数f(x)的递减区间为(0,1),递增区间为(-∞,0),(1,+∞).
(Ⅱ)f'(x)=ex+(x-1)ex-2kx=x(ex-2k),
令 f'(x)=0得,x=0或x=ln(2k);
令g(k)=ln(2k)-k,则g′(k)=
1
k
-1
>0,
所以g(k)在(
1
2
,1]上递增.
所以g(k)<0,从而ln(2k)<k,
所以当0<x<ln(2k)时,f'(x)<0;
当x>ln(2k)时,f'(x)>0;
所以M=max{f(0),f(k)}=max{-1,(k-1))ek-k3},
令h(k)=(k-1)ek-k3+1,则h′(k)=k(ek-3k),
令φ(k)=ek-3k,则φ′(k)=ek-3<0,
所以φ(k)=ek-3k在(
1
2
,1]上递减,
而φ(
1
2
)φ(1)<0;
所以存在x0∈(
1
2
,1]使得φ(x0)=0,
当k∈(
1
2
,x0)时,φ(k)>0,
当k∈(x0,1)时,φ(k)<0,
所以h(k)在(
1
2
,x0)上单调递增,在(x0,1)上单调递减.
因为h(
1
2
)=-
1
2
e
+
7
8
>0
,h(1)=0,
所以h(k)≥0在(
1
2
,1]上恒成立,当且仅当k=1时取得“=”.
综上,函数f(x)在[0,k]上的最大值为M=(k-1)ek-k3
点评:考查了导数的综合应用,用到了多次求导.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三棱锥O-ABC的各边长都相等,点G为△OBC的重心,以向量
OA
OB
OC
为基向量,则向量
AG
可以表示为(  )
A、
AG
=
1
3
OA
+
1
3
OB
+
1
3
OC
B、
AG
=-
1
3
OA
+
1
3
OB
+
1
3
OC
C、
AG
=
OA
+
1
3
OB
+
1
3
OC
D、
AG
=-
OA
+
1
3
OB
+
1
3
OC

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y=-
1
2
x2的焦点坐标是(  )
A、(0,-
1
2
B、(-
1
2
,0)
C、(0,-
1
8
D、(-
1
8
,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

有6人被邀请参加一项活动,必然有人去,去几人自行决定,共有(  )种不同去法.
A、36种B、35种
C、63种D、64种

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某四棱锥的正视图和侧视图如图所示,则该四棱锥的俯视图为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinx,cosx),
b
=(sinx,sinx),若x∈[-
8
π
4
],函数f(x)=n
a
b
的最大值是
1
2
,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3sin(ωx+
π
3
)(ω>0)的最小正周期为π.
(1)求ω值;
(2)若函数g(x)=f(x)(
x
2
+
π
12
),α,β∈(0,π),且g(α)=1,g(β)=
3
2
4
,求g(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
1
2
,且过点A(1,
3
2
).
(1)求椭圆C的方程;
(2)若点B在椭圆上,点D在y轴上,且
BD
=2
DA
,求直线AB方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

某省实验中学共有特级教师10名,其中男性6名,女性4名,现在要从中抽调4名特级教师担任青年教师培训班的指导教师,由于工作需要,其中男教师甲和女教师乙不能同时被抽调.
(1)求抽调的4名教师中含有女教师丙,且4名教师中恰有2名男教师、2名女教师的概率;
(2)求抽调的4名教师中女教师不少于2名的概率.

查看答案和解析>>

同步练习册答案