1£®Èç¹û¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©£¬¶ÔÈÎÒâµÄx¡ÊR£¬¶¼ÓÐf£¨-x£©¡Ù-f£¨x£©£¬Ôò³Æ¸Ãº¯ÊýÊÇ¡°¦Âº¯Êý¡±£®
£¨¢ñ£© ·Ö±ðÅжÏÏÂÁк¯Êý£º¢Ùy=2x£»¢Úy=2x+1£» ¢Ûy=x2-2x-3£¬ÊÇ·ñΪ¡°¦Âº¯Êý¡±£¿£¨Ö±½Óд³ö½áÂÛ£©
£¨¢ò£© Èôº¯Êýf£¨x£©=sinx+cosx+aÊÇ¡°¦Âº¯Êý¡±£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨¢ó£© ÒÑÖªf£¨x£©=$\left\{\begin{array}{l}{{x}^{2}+1£¬x¡ÊA}\\{x£¬x¡ÊB}\end{array}\right.$ÊÇ¡°¦Âº¯Êý¡±£¬ÇÒÔÚRÉϵ¥µ÷µÝÔö£¬ÇóËùÓпÉÄܵļ¯ºÏAÓëB£®

·ÖÎö £¨¢ñ£©¸ù¾Ý¡°¦Âº¯Êý¡±µÄ¶¨ÒåÅж¨£®¢Ù¡¢¢ÚÊÇ¡°¦Â º¯Êý¡±£¬¢Û²»ÊÇ¡°¦Âº¯Êý¡±£»
£¨¢ò£©ÓÉÌâÒ⣬¶ÔÈÎÒâµÄx¡ÊR£¬f£¨-x£©+f£¨x£©¡Ù0£¬¹Êf£¨-x£©+f£¨x£©=2cosx+2a
ÓÉÌâÒ⣬¶ÔÈÎÒâµÄx¡ÊR£¬2cosx+2a¡Ù0£¬¼´a¡Ù-cosx¼´¿ÉµÃʵÊýaµÄȡֵ·¶Î§
£¨¢ó£©£¨1£©¶ÔÈÎÒâµÄx¡Ù0
·Ö£¨a£©Èôx¡ÊAÇÒ-x¡ÊA£¬£¨b£©Èôx¡ÊBÇÒ-x¡ÊB£¬ÑéÖ¤
£¨2£©¼ÙÉè´æÔÚx0£¼0£¬Ê¹µÃx0¡ÊA£¬ÔòÓÉx0£¼$\frac{{x}_{0}}{2}$£¬¹Êf£¨x0£©£¼f£¨$\frac{{x}_{0}}{2}$£©£®
£¨a£©Èô$\frac{{x}_{0}}{2}¡ÊA$£¬Ôòf£¨$\frac{{x}_{0}}{2}$£©=$\frac{{{x}_{0}}^{2}}{4}+1£¼{{x}_{0}}^{2}+1=f£¨{x}_{0}£©$£¬Ã¬¶Ü£¬
£¨b£©Èô$\frac{{x}_{0}}{2}¡ÊB$£¬Ôòf£¨$\frac{{x}_{0}}{2}$£©=$\frac{{x}_{0}}{2}£¼0£¼{{x}_{0}}^{2}+1=f£¨{x}_{0}£©$£¬Ã¬¶Ü£®
£¨3£©¼ÙÉè0¡ÊB£¬Ôòf£¨-0£©=-f£¨0£©=0£¬Ã¬¶Ü£®¹Ê0¡ÊA£¬¹ÊA=[0£¬+¡Þ£©£¬B=£¨-¡Þ£¬0£©£®

½â´ð ½â£º£¨¢ñ£©¢Ù¡¢¢ÚÊÇ¡°¦Â º¯Êý¡±£¬¢Û²»ÊÇ¡°¦Âº¯Êý¡±£®¡­£¨3·Ö£©
£¨¢ò£©ÓÉÌâÒ⣬¶ÔÈÎÒâµÄx¡ÊR£¬f£¨-x£©¡Ù-f£¨x£©£¬¼´f£¨-x£©+f£¨x£©¡Ù0£¬£®
ÒòΪf£¨x£©=sinx+cosx+a£¬ËùÒÔf£¨-x£©=-sinx+cosx+a£®
¹Êf£¨-x£©+f£¨x£©=2cosx+2a
ÓÉÌâÒ⣬¶ÔÈÎÒâµÄx¡ÊR£¬2cosx+2a¡Ù0£¬¼´a¡Ù-cosx£®¡­£¨6·Ö£©
¹ÊʵÊýaµÄȡֵ·¶Î§Îª£¨-¡Þ£¬-1£©¡È£¨1£¬+¡Þ£©£®¡­£¨8·Ö£©
£¨¢ó£©£¨1£©¶ÔÈÎÒâµÄx¡Ù0
£¨a£©Èôx¡ÊAÇÒ-x¡ÊA£¬Ôò-x¡Ùx£¬f£¨-x£©=f£¨x£©£¬ÕâÓëy=f£¨x£©ÔÚRÉϵ¥µ÷µÝÔöì¶Ü£¬£¨Éᣩ£¬
£¨b£©Èôx¡ÊBÇÒ-x¡ÊB£¬Ôòf-£¨x£©=-x=-f£¨x£©£¬ÕâÓëy=f£¨x£©ÊÇ¡°¦Âº¯Êý¡±Ã¬¶Ü£¬£¨Éᣩ£®
´Ëʱ£¬ÓÉy=f£¨x£©µÄ¶¨ÒåÓòΪR£¬¹Ê¶ÔÈÎÒâµÄx¡Ù0£¬xÓë-xÇ¡ÓÐÒ»¸öÊôÓÚA£¬ÁíÒ»¸öÊôÓÚB£®
£¨2£©¼ÙÉè´æÔÚx0£¼0£¬Ê¹µÃx0¡ÊA£¬ÔòÓÉx0£¼$\frac{{x}_{0}}{2}$£¬¹Êf£¨x0£©£¼f£¨$\frac{{x}_{0}}{2}$£©£®
£¨a£©Èô$\frac{{x}_{0}}{2}¡ÊA$£¬Ôòf£¨$\frac{{x}_{0}}{2}$£©=$\frac{{{x}_{0}}^{2}}{4}+1£¼{{x}_{0}}^{2}+1=f£¨{x}_{0}£©$£¬Ã¬¶Ü£¬
£¨b£©Èô$\frac{{x}_{0}}{2}¡ÊB$£¬Ôòf£¨$\frac{{x}_{0}}{2}$£©=$\frac{{x}_{0}}{2}£¼0£¼{{x}_{0}}^{2}+1=f£¨{x}_{0}£©$£¬Ã¬¶Ü£®
×ÛÉÏ£¬¶ÔÈÎÒâµÄx£¼0£¬x∉A£¬¹Êx¡ÊB£¬¼´£¨-¡Þ£¬0£©⊆B£¬Ôò£¨0£¬+¡Þ£©⊆A£®
£¨3£©¼ÙÉè0¡ÊB£¬Ôòf£¨-0£©=-f£¨0£©=0£¬Ã¬¶Ü£®¹Ê0¡ÊA
¹ÊA=[0£¬+¡Þ£©£¬B=£¨-¡Þ£¬0£©£®
¾­¼ìÑéA=[0£¬+¡Þ£©£¬B=£¨-¡Þ£¬0£©£®·ûºÏÌâÒâ   ¡­£¨13·Ö£©

µãÆÀ ±¾Ì⿼²éÁËж¨Ò庯Êý£¬ÅªÇ嶨Ò庬ÒåÊǹؼü£¬·ÖÎö·¨ÊDZ¾ÌâµÄ»ù±¾·½·¨£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÔÚ¡÷ABCÖУ¬|AB|=5£¬|AC|=6£¬ÈôB=2C£¬Ôò±ßBCµÄ³¤Îª£¨¡¡¡¡£©
A£®5B£®$\frac{11}{5}$C£®$\frac{9}{5}$D£®$\frac{7}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÈçͼËùʾ£¬ÒÑÖªÈýÀâÖùABC-A1B1C1ÖУ¬A1C1=B1C1£¬A1A=A1B1£¬¡ÏAA1B1=60¡ã£®
£¨1£©ÇóÖ¤£ºAB¡ÍB1C£»
£¨2£©ÈôA1B1=B1C=2£¬${B_1}{C_1}=\sqrt{2}$£¬Çó¶þÃæ½ÇC1-AB1-BµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Ä³Ð£¸ßÈýÎĿưà150ÃûÄÐÉúÔÚ¡°Ñ§ÉúÌåÖʽ¡¿µ50Ã×ÅÜ¡±µ¥Ïî²âÊÔÖУ¬³É¼¨È«²¿½éÓÚ6ÃëÓë11ÃëÖ®¼ä£®ÏÖ½«²âÊÔ½á¹û·Ö³ÉÎå×飺µÚÒ»×é[6£¬7]£»µÚ¶þ×飨7£¬8]£¬¡­£¬µÚÎå×飨10£¬11]£®ÈçͼÊǰ´ÉÏÊö·Ö×é·½·¨µÃµ½µÄƵÂÊ·Ö²¼Ö±·½Í¼£®°´¹ú¼Ò±ê×¼£¬¸ßÈýÄÐÉú50Ã×Åܳɼ¨Ð¡ÓÚ»òµÈÓÚ7ÃëÈ϶¨ÎªÓÅÐ㣬ÈôÒÑÖªµÚËÄ×é¹²48ÈË£¬Ôò¸ÃУÎĿưàÄÐÉúÔÚÕâ´Î²âÊÔÖгɼ¨ÓÅÐãµÄÈËÊýÊÇ9£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Ä³É̳¡ÔÚ2017ÄêÔªµ©¿ªÕ¹¡°¹ºÎïÕÛÉÏÕÛ¡±»î¶¯£¬É̳¡ÄÚËùÓÐÉÌÆ·ÏȰ´±ê¼Û´ò°ËÕÛ£¬ÕÛºó¼Û¸ñÿÂú500ÔªÔÙ¼õ100Ôª£¬ÈçijÉÌÆ·±ê¼Û1500Ôª£¬Ôò¹ºÂò¸ÃÉÌÆ·µÄʵ¼Ê¸¶¿î¶îΪ1500¡Á0.8-200=1000Ôª£®É蹺ÂòijÉÌÆ·µÄʵ¼ÊÕÛ¿ÛÂÊ=$\frac{ʵ¼Ê¸¶¿î¶î}{ÉÌÆ·µÄ±ê¼Û}¡Á100%$£¬Ä³ÈËÓû¹ºÂò±ê¼ÛΪ2700ÔªµÄÉÌÆ·£¬ÄÇôËû¿ÉÒÔÏíÊܵÄʵ¼ÊÕÛ¿ÛÂÊԼΪ£¨¡¡¡¡£©
A£®55%B£®65%C£®75%D£®80%

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖªÈýÀâ×¶P-ABCµÄËĸö¶¥µã¾ùÔڰ뾶Ϊ1µÄÇòÃæÉÏ£¬ÇÒÂú×ã$\overrightarrow{PA}$$•\overrightarrow{PB}$=0£¬$\overrightarrow{PB}$$•\overrightarrow{PC}$=0£¬$\overrightarrow{PC}$$•\overrightarrow{PA}$=0£¬ÔòÈýÀâ×¶P-ABCµÄ²àÃæ»ýµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®1B£®2C£®4D£®8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªOÎª×ø±êÔ­µã£¬Ô²M£º£¨x+1£©2+y2=16£¬¶¨µãF£¨1£¬0£©£¬µãNÊÇÔ²MÉÏÒ»¶¯µã£¬Ïß¶ÎNFµÄ´¹Ö±Æ½·ÖÏß½»Ô²MµÄ°ë¾¶MNÓÚµãQ£¬µãQµÄ¹ì¼£ÎªE£®
£¨1£©ÇóÇúÏßEµÄ·½³Ì£»
£¨2£©ÒÑÖªµãPÊÇÇúÏßEÉϵ«²»ÔÚ×ø±êÖáÉϵÄÈÎÒâÒ»µã£¬ÇúÏßEÓëyÖáµÄ½»µã·Ö±ðΪB1¡¢B2£¬Ö±ÏßB1PºÍB2P·Ö±ðÓëxÖáÏཻÓÚC¡¢DÁ½µã£¬ÇëÎÊÏ߶γ¤Ö®»ý|OC|•|OD|ÊÇ·ñΪ¶¨Öµ£¿Èç¹ûÊÇÇëÇó³ö¶¨Öµ£¬Èç¹û²»ÊÇÇë˵Ã÷ÀíÓÉ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÈôµãC×ø±êΪ£¨-1£¬0£©£¬¹ýµãCµÄÖ±ÏßlÓëEÏཻÓÚA¡¢BÁ½µã£¬Çó¡÷ABDÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÔÚÇø¼ä[0£¬$\frac{¦Ð}{2}$]ÉÏËæ»úµØÈ¡Ò»¸öÊýx£¬Ôòʼþ¡°$\frac{1}{2}$¡Üsin x¡Ü$\frac{{\sqrt{3}}}{2}$¡±·¢ÉúµÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{1}{3}$C£®$\frac{1}{4}$D£®$\frac{1}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¼1£¾£ºÔÚÖ±½ÇÌÝÐÎABCDÖУ¬AD¡ÎBC£¬¡ÏABC=90¡ã£¬AB=BC=2£¬AD=6£¬CE¡ÍADÓÚEµã£¬°Ñ¡÷DECÑØCEÕÛµ½D¡äECµÄλÖã¬Ê¹D¡äA=2$\sqrt{3}$£¬Èçͼ£¼2£¾£ºÈôG£¬H·Ö±ðΪD¡äB£¬D¡äEµÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºGH¡ÍD¡äA£»
£¨¢ò£©ÇóÈýÀâ×¶C-D¡äBEµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸