精英家教网 > 高中数学 > 题目详情
9.若正方形ABCD的边长为1,且$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{BC}=\overrightarrow b,\overrightarrow{AC}$=$\overrightarrow c$,则$|{3\overrightarrow a+2\overrightarrow b-6\overrightarrow c}$|=5.

分析 可画出图形,而根据$|3\overrightarrow{a}+2\overrightarrow{b}-6\overrightarrow{c}|$=$\sqrt{(3\overrightarrow{a}+2\overrightarrow{b}-6\overrightarrow{c})^{2}}$进行数量积的计算即可求得答案.

解答 解:如图,
$|3\overrightarrow{a}+2\overrightarrow{b}-6\overrightarrow{c}|=\sqrt{(3\overrightarrow{a}+2\overrightarrow{b}-6\overrightarrow{c})^{2}}$=$\sqrt{9{\overrightarrow{a}}^{2}+4{\overrightarrow{b}}^{2}+36{\overrightarrow{c}}^{2}+12\overrightarrow{a}•\overrightarrow{b}-36\overrightarrow{a}•\overrightarrow{c}-24\overrightarrow{b}•\overrightarrow{c}}$=$\sqrt{9+4+72+0-36-24}=5$.
故答案为:5.

点评 考查求向量长度的方法:|$\overrightarrow{a}$|=$\sqrt{{\overrightarrow{a}}^{2}}$,以及数量积的计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,曲线$\left\{\begin{array}{l}{x=acosφ}\\{y=bsinφ}\end{array}\right.$(a>b>0,φ为参数,0≤φ<2π)上的两点A、B对应的参数分别为α,α+$\frac{π}{2}$.
(1)求AB中点M的轨迹的普通方程;
(2)求点O到直线AB的距离的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{a{x}^{2}+1}{bx+c}$(a、b、c∈R且a>0,b>0)为奇函数,当x>0时,f(x)有最小值2,且f(x)的递增区间是[$\frac{1}{2}$,+∞),试求a、b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.微信是现代生活进行信息交流的重要工具,对某城市年龄在20岁至60岁的微信用户进行有关调查发现,有$\frac{1}{3}$的用户平均每天使用微信时间不超过1小时,其他人都在1小时以上;若将这些微信用户按年龄分成青年人(20岁至40岁)和中年人(40岁至60岁)两个阶段,那么其中$\frac{3}{4}$是青年人;若规定:平均每天使用微信时间在1小时以上为经常使用微信,经常使用微信的用户中有$\frac{2}{3}$是青年人.
(I)现对该市微信用户进行“经常使用微信与年龄关系”的调查,采用随机抽样的方法选取容  量为l80的一个样本,假设该样本有关数据与调查结果完全相同,列出2×2列联表.
青年人中年人合计
经常使用微信
不经常使用微信
合计
(Ⅱ)由列表中的数据,是否有99.9%的把握认为“经常使用微信与年龄有关”?
(Ⅲ)从该城市微信用户中任取3人,其中经常使用微信的中年人人数为X,求出X的期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),右焦点$F(\sqrt{2},0)$,点$D(\sqrt{2},1)$在椭圆上.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ) 已知直线l:y=kx与椭圆C交于A,B两点,P为椭圆C上异于A,B的动点.
(i)若直线PA,PB的斜率都存在,证明:kPA•kPB=-$\frac{1}{2}$;
(ii) 若k=0,直线PA,PB分别与直线x=3相交于点M,N,直线BM与椭圆C相交于点Q(异于点B),求证:A,Q,N三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数$f(x)=\left\{\begin{array}{l}{x^2},x≤0\\{log_3}x,x>0\end{array}\right.$,则f(9)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知复数z=$\frac{\sqrt{3}-i}{1+\sqrt{3}i}$,则|z|=(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线M:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$两个焦点为分别为${F_1}(-\sqrt{3},0),{F_2}(\sqrt{3},0)$,过点F2的直线l与该双曲线的右支交于M、N两点,且△F1MN是等边三角形,则以点F2为圆心,与双曲线M的渐近线相切的圆的方程为(  )
A.${(x-\sqrt{3})^2}+{y^2}=2$B.${(x-\sqrt{3})^2}+{y^2}=4$C.${(x-\sqrt{3})^2}+{y^2}=1$D.${(x-\sqrt{3})^2}+{y^2}=\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设m>1,在约束条件$\left\{\begin{array}{l}{y≥x}\\{y≤mx}\\{x+y≤1}\end{array}\right.$下,目标函数z=x+my的最大值等于2,则m=$1+\sqrt{2}$.

查看答案和解析>>

同步练习册答案