精英家教网 > 高中数学 > 题目详情
12.Rt△ABC中,斜边BC为4,以BC中点为圆心,作半径为1的圆,分别交BC于P、Q两点,则|AP|2+|AQ|2+|PQ|2的值为(  )
A.4+$\sqrt{17}$B.3+$2\sqrt{5}$C.$\frac{19}{2}$D.14

分析 利用余弦定理,求出|AP|2、|AQ|2,结合∠AOP+∠AOQ=180°,即可求|AP|2+|AQ|2+|PQ|2的值.

解答 解:由题意,OA=OB=2,OP=OQ=1
△AOP中,根据余弦定理AP2=OA2+OP2-2OA•OPcos∠AOP
同理△AOQ中,AQ2=OA2+OQ2-2OA•OQcos∠AOQ
因为∠AOP+∠AOQ=180°,
所以|AP|2+|AQ|2+|PQ|2=2OA2+2OP2+PQ2=2×22+2×12+(2×1)2=14.
故选:D.

点评 本题考查直线与圆的位置关系的应用,是中档题,解题时要认真审题,注意余弦定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知△ABC中,$\frac{AC}{BC}$=$\frac{3}{2}$,B=60°,则sinA=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在三棱锥P-ABC中,PA⊥面ABC,∠BAC=120°,且AB=AC=AP=1,M为PB的中点,N在BC上,且AN=BN.
(Ⅰ)求证:AB⊥MN;
(Ⅱ)若∠ABC=30°,△NMA的面积为$\frac{\sqrt{15}}{24}$时,求点P到平面NMA的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥S-ABCD中,底面ABCD是矩形,SD=DC=2AD,侧棱SD⊥底面ABCD,点E是SC的中点,点F在SB上,且EF⊥SB.
(1)求证:SA∥平面BDE;
(2)求证SB⊥平面DEF;
(3)求二面角C-SB-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,∠BAC的平分线与BC和△ABC的外接圆分别相交于D和E,延长AC交过D,E,C三点的圆于点F.
(1)求证:EC=EF;(2)若ED=2,EF=3,求AC•AF的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在△ABC中,DC⊥AB于D,BE⊥AC于E,BE交DC于点F,若BF=FC=3,DF=FE=2.
(1)求证:AD•AB=AE•AC;
(2)求线段BC的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,在正方体ABCD-A1B1C1D1中,棱长为a,M、N分别是棱A1B、AC上的点,A1M=AN.
(1)求证:MN∥平面BB1C1C;
(2)求MN的长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四棱锥O-ABCD中,∠BAD=120°,OA⊥平面ABCD,E为OD的中点,OA=AC=$\frac{1}{2}$AD=2,AC平分∠BAD.
(1)求证:CE∥平面OAB;
(2)求四面体OACE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知A(2,-5,1),B(1,-4,1),C(2,-2,4),则$\overrightarrow{AB}$与$\overrightarrow{AC}$的夹角为(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

同步练习册答案