精英家教网 > 高中数学 > 题目详情
20.极坐标方程ρcosθ-ρsinθ+1=0的直线与x轴的交点为P,与椭圆$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)交于A,B两点,求|PA|•|PB|

分析 极坐标方程ρcosθ-ρsinθ+1=0的直线化为x-y+1=0,与x轴的交点为P(-1,0),其参数方程为:$\left\{\begin{array}{l}{x=-1+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(α为参数).椭圆$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)化为$\frac{{x}^{2}}{4}+{y}^{2}=1$.把直线参数方程代入椭圆方程可得t1t2.利用|PA|•|PB|=|t1t2|即可得出.

解答 解:极坐标方程ρcosθ-ρsinθ+1=0的直线化为x-y+1=0,与x轴的交点为P(-1,0),其参数方程为:$\left\{\begin{array}{l}{x=-1+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(α为参数).
椭圆$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)化为$\frac{{x}^{2}}{4}+{y}^{2}=1$.
把直线参数方程代入椭圆方程可得:$5{t}^{2}-2\sqrt{2}t-6=0$.
∴t1t2=-$\frac{6}{5}$.
∴|PA|•|PB|=|t1t2|=$\frac{6}{5}$.

点评 本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、直线参数方程的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.11100-1的结果的末尾连续零的个数为(  )
A.7B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.数列{xn},x1=$\frac{3}{2}$,xn+1=$\left\{\begin{array}{l}{3{x}_{n},n为奇数}\\{{x}_{n}+n,n为偶数}\end{array}\right.$
(1)设yn=x2n-1+n+$\frac{1}{2}$,求证{yn}成等比数列;
(2)记x1+x2+x3+…x2n=S2n,求$\frac{{S}_{2n}+2{n}^{2}+4n}{{9}^{n}}$最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的左、右焦点分别为F1,F2,O为坐标原点,M为y轴正半轴上一点,直线MF2交C于点A,若F1A⊥MF2,且|MF2|=2|OA|,则椭圆C的离心率为(  )
A.$\sqrt{2}-1$B.$\frac{1}{2}$C.$\sqrt{3}-1$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知:平面向量$\overrightarrow{a}$=(2,3),求:以向量$\overrightarrow{{e}_{1}}$=(2,0),$\overrightarrow{{e}_{2}}$=(0,2)为基底的$\overrightarrow{a}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求直线l1:3x-2y-6=0关于直线l:2x-3y+1=0的对称直线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$,求证:对于任意不小于3的正整数n,都有f(n)$>\frac{n}{n+1}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某校在寒假放假之前举行主题为“珍惜生命,安全出行”的“交通与安全”知识宣传与竞赛活动,为了了解本次活动举办的效果,从全校学生的答卷中抽取了部分学生的答卷成绩(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),…,[90,100]的数据):

(Ⅰ)求n,x,y的值,并根据频率分布的直观图估计这次竞赛的平均成绩;
(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到市政广场参加市团委举办的宣传演讲活动,求所抽取的2名同学来自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知点A(1,1)、B(3,5)到直线l距离均为1,直线l的方程是x=2;y=2x-1±$\sqrt{5}$;2x-y-1=0.

查看答案和解析>>

同步练习册答案