分析 (Ⅰ)由AB∥DC,得AB∥面SDC,由此能证明AB∥SH.
(Ⅱ)推导出SA⊥BC,AB⊥BC,从而BC⊥平面SAB,∠CSB是SC与面SAB所成的角,由此能求出直线SC与面SAB所成的角的大小.
解答 (本小题满分12分)
证明:(Ⅰ)因为AB∥DC,AB?面SDC,DC?面SDC,![]()
所以AB∥面SDC.(3分)
又因为面SAB∩面SDC=SH,AB?面SAB,
所以AB∥SH.(6分)
解:(Ⅱ)因为SA⊥面ABCD,BC?面ABCD,
所以SA⊥BC; (7分)
又因为AB⊥BC,且SA∩AB=A,
所以BC⊥平面SAB.(8分)
所以SC在面SAB上的射影为SB,所以∠CSB是SC与面SAB所成的角.(9分)
因为$SB=\sqrt{S{A^2}+A{B^2}}=2\sqrt{2}$,BC=2,$SC=\sqrt{S{B^2}+B{C^2}}=2\sqrt{3}$,(11分)
所以$sin∠CSB=\frac{BC}{SC}=\frac{{\sqrt{3}}}{3}$.
所以直线SC与面SAB所成的角为$\frac{{\sqrt{3}}}{3}$.(12分)
点评 本题考查线线平行的证明,考查直线与平面所成角的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若α=0,则sinα≥cosα | B. | 若sinα<cosα,则α≠0 | ||
| C. | 若α≠0,则sinα≥cosα | D. | 若sinα≥cosα,则α≠0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com