精英家教网 > 高中数学 > 题目详情
不等式|x|(2x-1)≤0的解集是(  )
A、(-∞,
1
2
]
B、(-∞,0)∪(0,
1
2
]
C、[-
1
2
,+∞)
D、[0,
1
2
]
考点:绝对值不等式的解法
专题:不等式的解法及应用
分析:直接去掉绝对值符号,转化表达式为一次不等式求解即可.
解答: 解:不等式|x|(2x-1)≤0转化为:x=0或2x-1≤0,解得x
1
2

不等式的解集为:(-∞,
1
2
].
故选:A.
点评:本题考查绝对值不等式的解法,考查转化思想的应用,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
x+
1
x
,x∈[-2,-1]
x-
1
x
,x∈[
1
2
,2]
,则f(x)的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ex-e2x+a,
(1)求f(x)的单调区间;
(2)若f(x)=0有两个不同解,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l:y=m(m为实常数)与曲线E:y=|lnx|的两个交点A、B的横坐标分别为x1、x2,且x1<x2,曲线E在点A、B处的切线PA、PB与y轴分别交于点M、N.有下面5个结论:
①|
MN
|=2;
②三角形PAB可能为等腰三角形;
③若直线l与y轴的交点为Q,则|PQ|=1;
④若点P到直线l的距离为d,则d的取值范围为(0,1);
⑤当x1是函数g(x)=x2+lnx的零点时,|
AO
|(0为坐标原点)取得最小值.
其中正确结论有
 
.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

式子9 1-log35的值是(  )
A、
3
5
B、
9
25
C、
3
25
D、
3
125

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知ABCD为平行四边形,∠A=60°,AB=6,点E在CD上,BD⊥AD,BD交EF于点N,且
AF
FB
+
DN
NB
+
DE
EC
=2,现将四边形ADEF沿EF折起,使点D在平面BCEF上的射影恰在B处.
(1)求证:BN⊥CD
(2)试问在直线DN上是否存在点G,使BG∥平面EDC,若存在,求出直线CG与平面EDC所成的正弦值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(x2+2)lnx,g(x)=2x2+ax,a∈R
(1)证明:f(x)是(0,+∞)上的增函数;
(2)设F(x)=f(x)-g(x),当x∈[1,+∞)时,F(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-3cos(
1
2
x-
π
4
)-1.
(1)求函数f(x)的周期;
(2)求函数f(x)的对称轴和对称中心;
(3)若x∈[0,π],求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1中,直线BC1与平面A1BD所成角的余弦值为(  )
A、
2
4
B、
2
3
C、
3
3
D、
3
2

查看答案和解析>>

同步练习册答案