精英家教网 > 高中数学 > 题目详情
关于x的不等式a•2x+4x+1>0恒成立,求常数a的取值范围
 
考点:指数型复合函数的性质及应用
专题:函数的性质及应用
分析:将不等式恒成立转化为参数恒成立,利用基本不等式的性质即可得到结论.
解答: 解:由a•2x+4x+1>0得a•2x>-4x-1,
∴a
-4x-1
2x
=-(2x+
1
2x
)

2x+
1
2x
≥2
2x?
1
2x
=2

-(2x+
1
2x
)≤-2

即a>-2,
故答案为:(-2,+∞).
点评:本题主要考查不等式恒成立问题,将不等式进行转化利用基本不等式进行求解是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某市共有100万居民的月收入是通过“工资薪金所得”得到的,如图是抽样调查后得到的工资薪金所得X的频率分布直方图.工资薪金个人所得税税率表如表所示.表中“全月应纳税所得额”是指“工资薪金所得”减去3500元所超出的部分(3500元为个税起征点,不到3500元不缴税).工资个税的计算公式为:“应纳税额”=“全月应纳税所得额”乘以“适用税率”减去“速算扣除数”.


全月应纳税所得额 适用税率(%) 速算扣除数
不超过1500元 3 0
超过1500元至4500元 10 105
超过4500元至9000元 20 555
例如:某人某月“工资薪金所得”为5500元,则“全月应纳税所得额”为5500-3500=2000元,应纳税额为2000×10%-105=95(元)
在直方图的工资薪金所得分组中,以各组的区间中点值代表该组的各个值,工资薪金所得落入该区间的频率作为x取该区间中点值的概率.
(Ⅰ)试估计该市居民每月在工资薪金个人所得税上缴纳的总税款;
(Ⅱ)设该市居民每月从工资薪金所得交完税后,剩余的为其月可支配额y(元),试求该市居民月可支配额y的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,制图工程师要用两个同中心的边长均为4的正方形合成一个八角形图形.由对称性,图中8个三角形都是全等的三角形,设∠AA1H1=α.
(1)试用α表示△AA1H1的面积;
(2)求八角形所覆盖面积的最大值,并指出此时α的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(12,-t)
为直线3x-4y+21=0的方向向量,则t=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的顶点A(4,0),B(0,2),C(m+4,2m+2),若△ABC为钝角三角形,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=e-
1
x
,则
lim
t→0
f(1-2t)-f(1)
t
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(1,-1),B(2,1),C(t,5)三点在同一直线上,则t=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若sin(α-3π)=2cos(α-4π),则
sin(α-π)+5cos(5π-α)
2sin(
3
2
π-α)-sin(-α)
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过两点A(4,y),B(2,-3)的直线的倾斜角是135°,则y=(  )
A、5B、-5C、1D、-1

查看答案和解析>>

同步练习册答案