分析 ①根据面面平行的性质定理进行判断.
②根据面面垂直的性质进行判断.
③根据线面垂直的性质进行判断.
④根据线面垂直和面面垂直的性质进行判断.
解答 解:①若α∥β,β∥γ,则α∥γ正确,同时和一个平面都平行的两个平面是平行的;故①正确,
②若α⊥β,β⊥γ,则α∥γ错误,同时和一个平面都垂直的两个平面可能是平行的也可能是相交的;故②错误
③若a⊥α,a⊥β,则α∥β正确,同时和一条直线垂直的两个平面是平行的;故③正确;
④若a⊥α,α⊥β,则a∥β或a?平面β,b⊥β,则a⊥b成立,故④正确,
故正确的是①③④.
故答案为:3
点评 本题主要考查命题的真假判断,涉及空间直线和平面,平面和平面平行或垂直的判断,根据相应的判定定理和性质定理是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | “?a∈R,方程ax2-2x+a=0有正实根”的否定为“?a∈R,方程ax2-2x+a=0有负实数” | |
| B. | 命题“a、b∈R,若a2+b2=0,则a=b=0”的逆否命题是“a、b∈R,若a≠0,且b≠0,则a2+b2≠0” | |
| C. | 命题p:若回归方程为$\stackrel{∧}{y}$-x=1,则y与x负相关;命题q:数据1,2,3,4的中位数是2或3,则命题p∨q为真命题 | |
| D. | 若X~N(1,4),则P(X<t2-1)=P(X>2t)成立的一个充分不必要条件t=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 2$\sqrt{3}$-1 | D. | 2$\sqrt{3}$+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20 | B. | -10 | C. | -10,10 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$+$\frac{3}{2}$i | B. | $\frac{3}{2}$+$\frac{1}{2}i$ | C. | $\frac{3}{2}$+$\frac{3}{2}$i | D. | $\frac{3}{2}$-$\frac{1}{2}$i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$+$\frac{5}{2}$i | B. | $\frac{1}{2}$-$\frac{5}{2}$i | C. | $\frac{1}{2}$+2i | D. | $\frac{1}{2}$-2i |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com