精英家教网 > 高中数学 > 题目详情
12.若复数z=$\frac{3+2i}{1-i}$(i为虚数单位),则z的共轭复数$\overline{z}$为(  )
A.$\frac{1}{2}$+$\frac{5}{2}$iB.$\frac{1}{2}$-$\frac{5}{2}$iC.$\frac{1}{2}$+2iD.$\frac{1}{2}$-2i

分析 利用复数代数形式的乘除运算化简,再由共轭复数的概念得答案.

解答 解:∵z=$\frac{3+2i}{1-i}$=$\frac{(3+2i)(1+i)}{(1-i)(1+i)}=\frac{1+5i}{2}=\frac{1}{2}+\frac{5}{2}i$,
∴z的共轭复数$\overline{z}$=$\frac{1}{2}-\frac{5}{2}i$.
故选:B.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知f(x)=ax2-2x(a>0),若存在实数t∈[0,2],使得|f(x)-t|≤5对任意的x∈[0,2]恒成立,则a的取值范围是$\frac{1}{5}$≤a≤$\frac{4}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知a、b是两条不同直线,α、β、γ是三个不同平面,给出以下命题:
①若α∥β,β∥γ,则α∥γ;
②若α⊥β,β⊥γ,则α∥γ;
③若a⊥α,a⊥β,则α∥β;
④若a⊥α,b⊥β,α⊥β,则a⊥b.
以上命题中真命题的个数是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某高中为了解全校学生每周参加体育运动的情况,随机从全校学生中抽取100名学生,统计他们每周参与体育运动的时间如下:
每周参与运动的时间(单位:小时)[0,4)[4,8)[8,12)[12,16)[16,20]
频数24402862
(1)作出样本的频率分布直方图;
(2)①估计该校学生每周参与体育运动的时间的中位数及平均数;
    ②若该校有学生3000人,根据以上抽样调查数据,估计该校学生每周参与体育运动的时间不低于8小时的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.四位男演员与五位女演员(包含女演员甲)排成一排拍照,其中四位男演员互不相邻,且女演员甲不站两侧的排法数为(  )
A.${A}_{5}^{5}$${A}_{6}^{4}$-2${A}_{4}^{4}$${A}_{5}^{4}$B.${A}_{5}^{5}$${A}_{4}^{4}$-${A}_{4}^{4}$${A}_{5}^{4}$
C.${A}_{6}^{5}$${A}_{5}^{4}$-2${A}_{4}^{4}$${A}_{4}^{4}$D.${A}_{5}^{5}$${A}_{5}^{4}$-${A}_{4}^{4}$${A}_{4}^{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知定义在R上的函数f(x)满足:f(1)=$\frac{10}{3}$,且对于任意实数x,y,总有f(x)f(y)=f(x+y)+f(x-y).若数列{an}满足an=3f(n)-f(n-1),n∈N*
(1)求数列{an}的通项公式;
(2)令bn=$\frac{24{a}_{n}}{(3{a}_{n}-8)^{2}}$,n∈N*,Sn是数列{bn}的前n项和,求证:Sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若实数b满足:(3+bi)(1+i)-2是纯虚数,则实数b=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某校为了解本校学生的课后玩电脑游戏时长情况,随机抽取了100名学生进行调查.如图是根据调查结果绘制的学生每天玩电脑游戏的时长的频率分布直方图.
(Ⅰ)根据频率分布直方图估计抽取样本的平均数$\overline{x}$和众数m(同一组中的数据用该组区间的中点值作代表);
(Ⅱ)已知样本中玩电脑游戏时长在[50,60]的学生中,男生比女生多1人,现从中选3人进行回访,记选出的男生人数为ξ,求ξ的分布列与期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若圆x2+y2=b与直线x+y=b相切,则b的值为(  )
A.$\frac{1}{2}$B.1C.2D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案