分析 (Ⅰ)由频率分布直方图中,[30,40)对应的小矩形最高,能求出m,由频率分布直方图,能求出抽取样本的平均数$\overline{x}$.
(Ⅱ)样本中玩电脑游戏时长在[50,60]的学生为5人,其中男生3人,女生2人,则ξ的可能取值为1,2,3,分别求出相应的概率,由此能求出ξ的分布列和数学期望.
解答 解:(Ⅰ)∵频率分布直方图中,[30,40)对应的小矩形最高,∴m=35,
由频率分布直方图,得:
$\overline x=5×0.1+15×0.18+25×0.22+35×0.25+45×0.2+55×0.05=29.2$.
(Ⅱ)样本中玩电脑游戏时长在[50,60]的学生为0.05×100=5人,
其中男生3人,女生2人,则ξ的可能取值为1,2,3
$P(ξ=1)=\frac{C_3^1C_2^2}{C_5^3}=\frac{3}{10}$,
$P(ξ=2)=\frac{C_3^2C_2^1}{C_5^3}=\frac{6}{10}=\frac{3}{5}$,
$P(ξ=3)=\frac{C_3^3}{C_5^3}=\frac{1}{10}$,
∴ξ的分布列为:
| ξ | 1 | 2 | 3 |
| P(ξ) | $\frac{3}{10}$ | $\frac{3}{5}$ | $\frac{1}{10}$ |
点评 本题考查样本平均数、众数的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识、频率分布直方图的性质的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$+$\frac{5}{2}$i | B. | $\frac{1}{2}$-$\frac{5}{2}$i | C. | $\frac{1}{2}$+2i | D. | $\frac{1}{2}$-2i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{20}$ | B. | $\frac{1}{20}$ | C. | $\frac{5}{8}$ | D. | $\frac{2}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-2} | B. | {-2,-1} | C. | {-2,-1,0} | D. | {0,1,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | 2 | D. | $\frac{8}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com