精英家教网 > 高中数学 > 题目详情
已知圆x2+y2=25,求:
(1)过点A(4,-3)的切线方程;
(2)过点B(-5,2)的切线方程.
考点:圆的切线方程
专题:直线与圆
分析:(1)由已知kOA=-
3
4
,从而切线方程过A(4,-3),斜率k=-
1
kOA
=
4
3
,由此能求出过点A(4,-3)的切线方程.(2)设过点B的切线方程为y-2=k(x+5),当过点B的切线的斜率不存在时,切线方程为x=-5,由此能求出过点B的切线方程.
解答: 解:(1)∵点A(4,-3)在圆x2+y2=25上,
圆心:O(0,0),半径r=5,
∴kOA=-
3
4
,∴切线方程过A(4,-3),斜率k=-
1
kOA
=
4
3

∴过点A(4,-3)的切线方程为y+3=
4
3
(x-4)

整理,得4x-3y-25=0.
(2)设过点B的切线方程为y-2=k(x+5),即kx-y+5k+2=0,
|5k+2|
k2+1
=5
,解得k=
21
20

∴过点B的切线方程为
21
20
x-y+
105
20
+2=0

整理,得21x-20y+145=0.
当过点B的切线的斜率不存在时,切线方程为x=-5,成立.
综上,过点B的切线方程为21x-20y+145=0或x=-5.
点评:本题考查圆的切线方程的求法,是中档题,解题时要认真审题,注意点到直线的距离公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设{an}是等比数列,首项为a,公比为q,前n项和为Sn,记Tn=a12+a22+…+an2
(1)若a1=1,S3=3,求数列{an}的通项公式;
(2)若Sn=-
1
2
an+3,求证:S2n=
2
3
Tn
(3)计算:
lim
n→∞
Sn
Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为梯形,AB∥DC,DC=4,∠DAB=60°,侧面△PAD和△PAB均为边长为2的正三角形,M为线段PC的中点.
(Ⅰ)求证:PD⊥AB;
(Ⅱ)求二面角P-BC-D的平面角的正切值;
(Ⅲ)试问:在线段AB上是否存在点N,使得MN与平面PDB的交点恰好是△PDB的重心?若存在,求出AN的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

方程x2+2(m-2)x+m2+4=0,有两个根x1、x2,且x12+x22-x1x2=21,求m.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=cos(-
x
2
)+sin(π-
x
2
),x∈R  求f(x)的最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥P-ABC的三条侧棱两两垂直,且长分别为a,b,c,又(a2+b2)c=
6
,侧面PAB与底面ABC所成的角为60°,当三棱锥的体积最大时,则a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点坐标为A(1,0),B(-2,-3),C(3,0),则BC边上的高所在的直线的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知模长为1,2,3的三个向量
a
b
c
,且
a
b
=
b
c
=
c
a
=0,则|
a
+
b
+
c
|的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0<a<1,loga(1-x)<logax,则x的取值范围是
 

查看答案和解析>>

同步练习册答案