精英家教网 > 高中数学 > 题目详情
已知f(x)=x3-4,则零点一定在(  )
A、(1,2)
B、(2,3)
C、(3,4)
D、(5,6)
考点:函数零点的判定定理
专题:函数的性质及应用
分析:根据函数零点的判断条件,分别验证函数在端点处的符号,即可得到结论.
解答: 解:∵f(x)=x3-4,
∴f(1)=1-4=-3<0,
f(2)=23-4=8-4=4>0,
满足f(1)f(2)<0,
即f(x)=x3-4的零点所在的区间为(1,2),
故选:A.
点评:本题主要考查函数零点区间的判断,分别把端点值代入分别判断函数的符号时解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

不等式(x+1)(x-2)<0的解集是(  )
A、(-∞,-2)
B、(-2,1)
C、(-∞,-1)∪(2,+∞)
D、(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点分别为F1,F2,过点F2作倾斜角为60°的直线交双曲线于点P,设PF2的中点为M.若|OF2|=|F2M|,则该双曲线的离心率为(  )
A、
2
+1
2
B、
3
+1
2
C、
2
+1
D、
3
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

若a1=12,a2=12+22+12,…,an=12+22+…+n2+…+22+12,在运用数学归纳法证明an=
1
3
n(2n2+1)时,第二步中从k到k+1应添加的项是(  )
A、k2+1
B、(k2+1)2
C、(k+1)2+k2
D、(k+1)2+2k2

查看答案和解析>>

科目:高中数学 来源: 题型:

过△ABC所在平面α外一点P,作PO⊥α,垂足为O,连接PA,PB,PC.若PA=PB=PC,则点O是△ABC的(  )
A、垂心B、外心C、内心D、重心

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一个焦点F作渐近线的垂线l,垂足为M,l交y轴于点E,若
FM
=3
ME
,则该双曲线的离心率为(  )
A、
2
B、2
C、3
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD.
(Ⅰ)若E,F分别为PC,BD中点,求证:EF∥平面PAD;
(Ⅱ)求证:PA⊥CD;
(Ⅲ)若PA=PD=
2
2
AD,求证:平面PAB⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是公差不为零的等差数列,Sn为其前n项和,满足:a22+a32=a42+a52,S7=7.
(1)求数列{an}的通项公式;
(2)求数列{|an|}的及前n项和Tn
(3)试求所有的正整数m,使得
amam+1
am+2
为数列{an}中的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程2x2-(
3
+1)x+m=0的两根为sinθ和cosθ,θ∈(0,2π).求:
(1)m的值;
(2)求证:
sin2α
sinα-cosα
+
cos2α
cosα-sinα
=
3
+1
2

查看答案和解析>>

同步练习册答案