精英家教网 > 高中数学 > 题目详情
14.函数f(x)=1-2sin2x+2cos x的最小值和最大值分别为(  )
A.-1,1B.-$\frac{3}{2}$,-1C.-$\frac{3}{2}$,3D.-2,$\frac{3}{2}$

分析 化简成只有一个函数名,同角,转化为二次函数求解.

解答 解:函数f(x)=1-2sin2x+2cos x,
化简得:f(x)=1-2(1-cos2x)+2cos x=2cos2x+2cos x-1=2(cosx+$\frac{1}{2}$)2-$\frac{3}{2}$.
当cosx=$-\frac{1}{2}$时,f(x)取得最小值为$-\frac{3}{2}$.
当cosx=1时,f(x)取得最大值为3.
∴函数f(x)=1-2sin2x+2cos x的最小值和最大值分别为$-\frac{3}{2}$,3.
故选C.

点评 本题考查三角函数的有界性,二次函数的最值,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知S,A,B,C是球O表面上的不同点,SA⊥平面ABC,AB⊥BC,AB=1,BC=$\sqrt{2}$,若球O的表面积为4π,则SA=(  )
A.$\frac{\sqrt{2}}{2}$B.1C.$\sqrt{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a∈R,f(x)=aln(x-1)+x,f′(2)=2
(1)求a的值,并求曲线y=f(x)在点(2,f(2))处的切线方程y=g(x);
(2)设h(x)=mf′(x)+g(x)+1,若对任意的x∈[2,4],h(x)>0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在平面直角坐标系中,已知三点A(1,-2),B(2,-1),C(0,-2),则|$\overrightarrow{AB}$+$\overrightarrow{BC}$|=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A、B为两个同高的几何体,p:A、B的体积不相等,q:A、B在等高处的截面积不恒相等,根据祖暅原理可知,p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|x>5},集合B={x|x>a},若命题“x∈A”是命题“x∈B”的充分不必要条件,则实数a的取值范围是(  )
A.(-∞,5)B.(-∞,5]C.(5,+∞)D.[5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.“a>b”是“2a>2b”的_________条件.(  )
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设曲线C的参数方程为$\left\{\begin{array}{l}x=2+3cosθ\\ y=1+3sinθ\end{array}\right.$(θ为参数),直线l的方程为x-3y+2=0,则曲线C上到直线l的距离为$\frac{{7\sqrt{10}}}{10}$的点的个数为4个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.点M是抛物线y2=x上的点,点N是圆C:(x-3)2+y2=1上的点,则|MN|的最小值是(  )
A.$\frac{\sqrt{11}}{2}$-1B.$\frac{\sqrt{10}}{2}$-1C.2D.$\sqrt{3}$-1

查看答案和解析>>

同步练习册答案