精英家教网 > 高中数学 > 题目详情
2.已知正项数列{an}的前n项和为Sn,且$\frac{{a}_{n}+1}{6}$=$\frac{{S}_{n}+n}{{S}_{n+1}-{S}_{n}+1}$,a1=m,现有如下说法:
①a2=5;
②当n为奇数时,an=3n+m-3;
③a2+a4+…+a2n=3n2+2n.
则上述说法正确的个数为(  )
A.0个B.1个C.2个D.3个

分析 $\frac{{a}_{n}+1}{6}$=$\frac{{S}_{n}+n}{{S}_{n+1}-{S}_{n}+1}$,a1=m,可得(an+1+1)(an+1)=6(Sn+n),n=1时,(a2+1)×(m+1)=6(m+1),可得a2=5.n≥2时,(an+1)(an-1+1)=6(Sn-1+n-1),可得(an+1)(an+1-an-1)=6an+6,an>0,an+1-an-1=6.再利用等差数列的通项公式与求和公式即可判断出②③的正误.

解答 解:$\frac{{a}_{n}+1}{6}$=$\frac{{S}_{n}+n}{{S}_{n+1}-{S}_{n}+1}$,a1=m,
∴(an+1+1)(an+1)=6(Sn+n),
①n=1时,(a2+1)×(m+1)=6(m+1),∵m+1>0时,∴a2=5.
②n≥2时,(an+1)(an-1+1)=6(Sn-1+n-1),
∴(an+1)(an+1-an-1)=6an+6,an>0,
∴an+1-an-1=6.
∴当n=2k-1(k∈N*)为奇数时,数列{a2k-1}为等差数列,∴an=a2k-1=m+(k-1)×6=3n+m-3.
③当n=2k(k∈N*)为偶数时,数列{a2k}为等差数列,∴an=a2k=5+(k-1)×6=3n-1.
∴a2+a4+…+a2n=6×(1+2+…+n)-n=$6×\frac{n(1+n)}{2}$-n=3n2+2n.
因此①②③都正确.
故选:D.

点评 本题考查了等差数列的通项公式与求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗.问:五人各得几何?”其意思为“有5个人分60个橘子,他们分得的橘子数成公差为3的等差数列,问5人各得多少橘子.”这个问题中,得到橘子最少的人所得的橘子个数是6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若直线ax+by+1=0(a>0,b>0)把圆(x+4)2+(y+1)2=16分成面积相等的两部分,则$\frac{1}{2a}+\frac{2}{b}$的最小值为(  )
A.10B.8C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a∈R,若$f(x)=(\frac{1}{x}+a){e^x}$在区间(0,1)上有且只有一个极值点,则a的取值范围是(  )
A.a<0B.a>0C.a≤1D.a≥0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.复数$\frac{2}{i(3-i)}$=(  )
A.$\frac{1-3i}{5}$B.$\frac{1+3i}{5}$C.$\frac{3+i}{5}$D.$\frac{3-i}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设等差数列{an}的前n项和为Sn,已知${({{a_5}-1})^3}+3{a_5}=4$,${({{a_8}-1})^3}+3{a_8}=2$,则下列选项正确的是(  )
A.S12=12,a5>a8B.S12=24,a5>a8C.S12=12,a5<a8D.S12=24,a5<a8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若复数z满足i(z-1)=1+i(i虚数单位),则z=(  )
A.2-iB.2+iC.1-2iD.1+2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知:(logax)′=$\frac{1}{xlna}$,f′(x)是定义在(0,+∞)上的函数f(x)的导函数,若方程f′(x)=0无解,且对?x∈(0,+∞),f[f(x)-log2016x]=2017,设关于x的方程f(x)+f′(x)=t有解,则t的取值范围是(  )
A.[2016+$\frac{1}{ln2016}$,+∞)B.(2016+$\frac{1}{ln2016}$,+∞)C.[2016-$\frac{1}{ln2016}$,+∞)D.(2016-$\frac{1}{ln2016}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.规定;投掷飞镖3次为一轮,若3次中至少两次投中8环以上为优秀,现采用随机模拟试验的方法估计某选手的投掷飞镖的情况,先由计算机根据该选手以往的投掷情况产生随机数0或1,用0表示该次投掷未在8环以上,用1表示该次投掷在8环以上;再以每三个随机数为一组,代表一轮的结果,经随机模拟试验产生了如下20组随机数;
101    111    011    101    010    100    100    011    111    110   
000    011    010    001    111    011    100    000    101    101
据此估计,该选手投掷1轮,可以拿到优秀的概率为0.6.

查看答案和解析>>

同步练习册答案