精英家教网 > 高中数学 > 题目详情
如图所示,在三棱柱ABC-A1B1C1中,AA1⊥底面A1B1C1,底面为直角三角形,∠ACB=90°,AC=2,BC=1,CC1=
3
,P是BC1上一动点,则A1P+PC的最小值是
 
考点:棱柱的结构特征
专题:空间位置关系与距离
分析:连A1B,沿BC1将△CBC1展开与△A1BC1在同一个平面内,利用两点之间线段最短,即可求出满足条件的P的位置,然后利用余弦定理即可求解.
解答: 解:连A1B,沿BC1将△CBC1展开与△A1BC1在同一个平面内,如图所示,
连A1C,则A1C的长度就是所求的最小值.
在三棱柱ABC-A1B1C1中,AA1⊥底面A1B1C1,底面为直角三角形,∠ACB=90°,AC=2,BC=1,CC1=
3

∴BC1=2,A1C1=2,A1B=2
2
,BC=1,CC1=
3

即∠A1C1B=90°,∠CC1B=30°,
∴∠A1C1C=90°+30°=120°,
由余弦定理可求得A1C2=22+(
3
)2-2×2×
3
×cos120°
=4+3+2×2×
3
×
1
2
=7+2
3

∴A1P+PC的最小值是
7+2
3

故答案为:
7+2
3
点评:本题主要考查空间线段长度的最值计算,利用平面展开法将空间问题转化为平面两点之间线段最短是解决本题的关键,利用余弦定理即可求解长度问题,综合性较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若直线2x+(m+1)y+4=0与直线mx+3y+4=0平行,则m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设满足条件x2+y2≤1的点(x,y)构成的平面区域的面积为S1,满足条件[x]2+[y]2≤1的点(x,y)构成的平面区域的面积为S2(其中[x],[y]分别表示不大于x,y的最大整数,例如[-0.3]=-1,[1.2]=1),给出下列结论:
①点(S1,S2)在直线y=x左上方的区域内;
②点(S1,S2)在直线x+y=7左下方的区域内;
③S1<S2
④S1>S2
其中所有正确结论的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(Ⅰ)当a=-2时,求不等式f(x)<g(x)的解集;
(Ⅱ)设a>-1,且当x∈[-
a
2
1
2
]
时,f(x)<g(x),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=loga(x-2)(a>0,a≠1).
(1)求函数定义域和函数图象所过的定点;
(2)若已知x∈[4,6]时,函数最大值为2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

324与135的最大公约数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在圆内画1条线段,将圆分成两部分;画2条相交线段,将圆分割成4部分;画3条线段,将圆最多分割成7部分;画4条线段,将圆最多分割成11部分,那么,
(I)在圆内画5条线段,将圆最多分割成
 
部分;
(Ⅱ)在圆内画n条线段,将圆最多分割成
 
部分.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|0<x<2},B={x|(x-1)(x+1)>0},则A∪B=(  )
A、(0,1)
B、(1,2)
C、(-∞,-1)∪(0,+∞)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设不等式2(log
1
2
x)2-3log
1
2
x+1≤0
的解集为M,求当x∈M时函数f(x)=(log2
x
2
)(log2
x
8
)
的最大、最小值.

查看答案和解析>>

同步练习册答案