精英家教网 > 高中数学 > 题目详情
6.设an是${(1-\sqrt{x})^n}$的展开式中x项的系数(n=2,3,4,…),若${b_n}=\frac{{{a_{n+1}}}}{{(n+7)a_{n+2}^{\;}}}$,则bn的最大值是(  )
A.$\frac{{9-2\sqrt{14}}}{25}$B.$\frac{2}{33}$C.$\frac{3}{50}$D.$\frac{{7-2\sqrt{6}}}{25}$

分析 利用二项式定理可得展开式中x项的系数=${∁}_{n}^{2}$=an,代入${b_n}=\frac{{{a_{n+1}}}}{{(n+7)a_{n+2}^{\;}}}$=$\frac{n}{(n+7)(n+2)}$=$\frac{1}{n+\frac{14}{n}+9}$,利用基本不等式的性质或函数的单调性即可得出.

解答 解:${(1-\sqrt{x})^n}$的通项公式:Tr+1=${∁}_{n}^{r}$$(-\sqrt{x})^{r}$=(-1)r${∁}_{n}^{r}$${x}^{\frac{r}{2}}$,令$\frac{r}{2}$=1,解得r=2.
∴展开式中x项的系数=${∁}_{n}^{2}$=an
即an=$\frac{n(n-1)}{2}$.
∴${b_n}=\frac{{{a_{n+1}}}}{{(n+7)a_{n+2}^{\;}}}$=$\frac{\frac{(n+1)n}{2}}{(n+7)\frac{(n+1)(n+2)}{2}}$=$\frac{n}{(n+7)(n+2)}$=$\frac{1}{n+\frac{14}{n}+9}$≤$\frac{1}{2\sqrt{14}+9}$,
n∈N*(n>1),可得n=4时,bn取得最大值$\frac{2}{33}$.
故选:B.

点评 本题考查了二项式定理、基本不等式的性质、函数的单调性、数列通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.若中心在原点、焦点在y轴上的双曲线的一条渐近线方程为x+3y=0,则此双曲线的离心率为$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.将23化为二进制数为(  )
A.10111B.10101C.11101D.00110

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知直角坐标原点O为椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的中心,F1,F2为左右焦点,在区间(0,2)任取一个数e,则事件“以e为离心率的椭圆C与圆O:x2+y2=a2-b2没有交点”的概率为(  )
A.$\frac{\sqrt{2}}{4}$B.$\frac{4-\sqrt{2}}{4}$C.$\frac{\sqrt{2}}{2}$D.$\frac{2-\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右顶点为A(2,0),且点C(1,1)在椭圆E上,直线CO(O为坐标原点)交椭圆E于点B.
(1)求椭圆E的方程;
(2)在椭圆E上是否存在点Q,使得|Q B|2-|Q A|2=2?若存在,有几个(不必求出Q点的坐标),若不存在,请说明理由;
(3)过椭圆E上异于其顶点的任一点 P,作⊙O:${x^2}+{y^2}=\frac{4}{3}$的两条切线,切点分别为 M、N,若直线 M N在x轴、y轴上的截距分别为m、n,证明:$\frac{1}{{3{m^2}}}+\frac{1}{n^2}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为808 .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知点P在曲线y=ex上,点Q在曲线y=lnx上,则|PQ|的最小值是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若x,y满足约束条件$\left\{\begin{array}{l}{x-y+1≤0}\\{x-2y≤0}\\{x+2y-2≤0}\end{array}\right.$,则目标函数z=x+y的最大值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设集合A={-1,0,1},B={x|x2-2x-3<0},则A∩B=(  )
A.{-1,0,1}B.{0,1}C.(-1,1)D.(-1,3)

查看答案和解析>>

同步练习册答案