精英家教网 > 高中数学 > 题目详情
11.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为808 .

分析 利用分层抽样列出方程,由此能求出这四个社区驾驶员的总人数N.

解答 解:对甲、乙、丙、丁四个社区做分层抽样调查.
假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.
在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,
则$\frac{12+21+25+43}{N}$=$\frac{12}{96}$,
∴这四个社区驾驶员的总人数N=808.
故答案为:808.

点评 本题考查四个社区驾驶员的总人数的求法,是基础题,解题时要认真审题,注意分层抽样的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.若x,y满足约束条件$\left\{\begin{array}{l}x≥1\\ x+y-3≤0\\ x-y-3≤0\end{array}\right.$,设x2+y2+4x的最大值点为A,则经过点A和B(-2,-3)的直线方程为3x-5y-9=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,内角A,B,C的对边分别为a,b,c,已知2ccosA+a=2b.
(Ⅰ)求角C的值;
(Ⅱ)若c=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an},{bn}中,a1=1,an+1-(n+1)an=0,${b_1}^3+{b_2}^3+…+{b_n}^3={({{b_1}+{b_2}+…+{b_n}})^2}$且bn>0,n∈N*.记n的阶乘n(n-1)(n-2)…3•2•1=n!
(1)求数列{an},{bn}的通项公式;
(2)若${c_n}=\frac{b_n}{{a{\;}_{n+1}}}$,求证:${c_1}+{c_2}+…+{c_n}≥\frac{n}{n+1}{\;}_{\;}{\;}_{\;}(n∈{N^*})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设an是${(1-\sqrt{x})^n}$的展开式中x项的系数(n=2,3,4,…),若${b_n}=\frac{{{a_{n+1}}}}{{(n+7)a_{n+2}^{\;}}}$,则bn的最大值是(  )
A.$\frac{{9-2\sqrt{14}}}{25}$B.$\frac{2}{33}$C.$\frac{3}{50}$D.$\frac{{7-2\sqrt{6}}}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若关于x的方程lg(x2+ax)=1在x∈[1,5]上有解,则实数a的取值范围为[-3,9].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若△OAB的垂心恰是抛物线y2=4x的焦点,其中O是原点,A,B在抛物线上,则△OAB的面积S=10$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.函数f(x)=ln(x+m)-nlnx.
(1)当m=1,n>0时,求函数f(x)的单调减区间;
(2)n=1时,函数g(x)=(m+2x)•f(x)-am,若存在m>0,使得g(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点(2,3)在椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$上,设A,B,C分别为椭圆的左顶点、上顶点、下顶点,且点C到直线AB的距离为$\frac{{4\sqrt{7}}}{7}b$.
(I)求椭圆C的方程;
(II)设M(x1,y1),N(x2,y2)(x1≠x2)为椭圆上的两点,且满足$\overrightarrow{OM}$•$\overrightarrow{ON}$=$\frac{{a}^{2}{x}_{1}{x}_{2}+{b}^{2}{y}_{1}{y}_{2}}{{a}^{2}+{b}^{2}}$,求证:△MON的面积为定值,并求出这个定值.

查看答案和解析>>

同步练习册答案