已知数列,满足,,,数列的前项和为,.
(1)求数列的通项公式;
(2)求证:;
(3)求证:当时,.
科目:高中数学 来源: 题型:填空题
若数列{an}满足=p(p为正常数,n∈N+),则称{an}为“等方比数列”.
甲:数列{an}是等方比数列;乙:数列{an}是等比数列,则甲是乙的 条件.(在“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”选择一个填入)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设数列{an}的前n项和为Sn.已知a1=a,an+1=Sn+3n,n∈N*.
(1)设bn=Sn-3n,求数列{bn}的通项公式;
(2)若an+1≥an,n∈N*,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知{an}是一个公差大于0的等差数列,且满足a4a5=55,a3+a6=16
(1)求数列{an}的通项公式;
(2)若数列{an}和数列{bn}满足等式:
an-1=,an=(为正整数),
设数列{bn}的前项和,cn=(an+19)(Sn+50),数列{cn}前n项和为Tn,
求Tn的最小值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知等差数列的首项,公差,且第项、第项、第项分别是等比数列的第项、第项、第项.
(1)求数列,的通项公式;
(2)若数列对任意,均有成立.
①求证:; ②求.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
若数列满足,则称数列为“平方递推数列”.已知数列中,,点在函数的图象上,其中为正整数.
(Ⅰ)证明数列是“平方递推数列”,且数列为等比数列;
(Ⅱ)设(Ⅰ)中“平方递推数列”的前项积为,即,求;
(Ⅲ)在(Ⅱ)的条件下,记,求数列的前项和,并求使的的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com