精英家教网 > 高中数学 > 题目详情
8.若数列{an}满足an+1+an=2n-1,则数列{an}的前8项和为28.

分析 数列{an}满足an+1+an=2n-1,对n分别取1,3,5,7,求和即可得出.

解答 解:∵数列{an}满足an+1+an=2n-1,
∴数列{an}的前8项和=(2×1-1)+(2×3-1)+(2×5-1)+(2×7-1)=28.
故答案为:28.

点评 本题考查了递推关系、分组求和方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.若y=cosx${∫}_{-\frac{π}{2}}^{0}$sintdt-$\frac{1}{4}$cos2x+$\frac{5}{4}$,则y的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.数列{an}中,a1=1,a2=2,3an+2=2an+1+an,求an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(α)=$\frac{sin(π-α)cos(2π-α)}{sin(\frac{π}{2}+α)}$,则f($\frac{31π}{3}$)=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.2015年12月6日宁安高铁正式通车后,极大地方便了沿线群众的出行生活.小明与小强都是在芜湖工作的马鞍山人,他们每周五下午都乘坐高铁从芜湖返回马鞍山.因为工作的需要,小明每次都在15:30至18:30时间段出发的列车中任选一车次乘坐;小强每次都在16:00至18:30时间段出发的列车中任选一车次乘坐.(假设两人选择车次时都是等可能地随机选取)
(Ⅰ)求2016年1月8日(周五)小明与小强乘坐相同车次回马鞍山的概率;
(Ⅱ)记随机变量X为小明与小强在1月15日(周五),1月22日(周五),1月29日(周五)这3天中乘坐的车次相同的次数,求随机变量X的分布列与数学期望.
附:2016年1月10日至1月31日每周五下午芜湖站至马鞍山东站的高铁时刻表.
车次芜湖发车到达马鞍山东耗时
G717413:3714:0225分钟
G717815:0515:2419分钟
D560615:3716:0225分钟
D560817:2917:4819分钟
G708818:2918:4819分钟

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C的对边分别为a,b,c,已知acosC+$\sqrt{3}$asinC=b+2c.
(Ⅰ)求角A;
(Ⅱ)若向量$\overrightarrow{BA}$在向量$\overrightarrow{BC}$方向上的投影为$\frac{33}{14}$,且sinC=$\frac{3\sqrt{3}}{14}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)={a_1}x+{a_2}{x^2}+{a_3}{x^3}+…+{a_n}{x^n}$,对于任意n∈N+均有f(1)=n2+n.
(1)求数列{an}的通项公式,并证明数列{an}为等差数列;
(2)若n为偶数,且${b_n}={2^{f(-1)}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=2cosx+1的图象在点x=$\frac{π}{6}$处的切线方程是x+y-1-$\sqrt{3}$-$\frac{π}{6}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知z(2-i)=1+i,则$\overline z$=(  )
A.$-\frac{1}{5}-\frac{3}{5}i$B.$\frac{1}{5}+\frac{3}{5}i$C.$-\frac{1}{5}+\frac{3}{5}i$D.$\frac{1}{5}-\frac{3}{5}i$

查看答案和解析>>

同步练习册答案