精英家教网 > 高中数学 > 题目详情
11.设向量$\overrightarrow a$=(1,x),$\overrightarrow b$=(x,4),则“x=$\int_{1}^{e}{\frac{2}{t}}$dt”(e=2.718…是自然对数的底数)是“$\overrightarrow a$∥$\overrightarrow b$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 利用定积分求解x的值,然后判断充要条件即可.

解答 解:x=$\int_{1}^{e}{\frac{2}{t}}$dt=2lnx${|}_{1}^{e}$=2.
向量$\overrightarrow a$=(1,x)=(1,2),$\overrightarrow b$=(x,4)=(2,4),
可得“$\overrightarrow a$∥$\overrightarrow b$”,
但是“$\overrightarrow a$∥$\overrightarrow b$”,可得x=-2,
所以“x=$\int_{1}^{e}{\frac{2}{t}}$dt”(e=2.718…是自然对数的底数)是“$\overrightarrow a$∥$\overrightarrow b$”的充分不必要条件.
故选:A.

点评 本题考查充要条件的应用,定积分的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若圆锥的侧面展开图是半径为1cm、圆心角为120°的扇形,则这个圆锥的轴截面面积等于$\frac{2\sqrt{2}}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若2sin2α=1-cos2α,则tanα等于(  )
A.-2B.2C.-2或0D.2或0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在三角形ABC中,已知AB=5,AC=7,AD是BC边上的中线,点E是AD的一个三等分点(靠近点A),则$\overrightarrow{AE}•\overrightarrow{BC}$=(  )
A.12B.6C.24D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0、1、2表示没有击中目标,3、4、5、6、7、8、9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:
7527 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
根据以上数据估计该射击运动员射击4次至少击中3次的概率为(  )
A.0.55B.0.6C.0.65D.0.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在如图所示的几何体中,四边形BB1C1C是矩形,BB1⊥平面ABC,A1B1∥AB,AB=2A1B1,E是AC的中点.
(1)求证:A1E∥平面BB1C1C;
(2)若AC=BC,AB=2BB1,求证:平面BEA1⊥平面AA1C1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等比数列{an}和等差数列{bn}均是首项为1的递增数列,且a2=b2,a3=b4
(I)求数列{an}和{bn}的通项公式;
(Ⅱ)若数列{cn}满足cn=an+(-1)nbn,求数列{cn)前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.中国传统文化中很多内容体现了数学的对称美,如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的形式美、和谐美.给出定义:能够将圆O的周长和面积同时平分的函数称为这个圆的“优美函数”.给出下列命题:
①对于任意一个圆O,其“优美函数”有无数个;
②正弦函数y=sinx可以同时是无数个圆的“优美函数”;
③函数f(x)=ln(x2+$\sqrt{{x^2}+1$)可以是某个圆的“优美函数”;
④函数y=f(x)是“优美函数”的充要条件为函数y=f(x)的图象是中心对称图形.
其中正确的命题是①②(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列结论中正确的是(  )
①α∥β,β∥γ,则α∥γ;
②过平面外一条直线有且只有一个平面与已知平面平行;
③平面外的两条平行线中,如果有一条和平面平行,那么另一条也和这个平面平行;
④如果一条直线与两个平行平面中一个相交,那么它与另一个必相交.
A.①②③B.②③④C.①③④D.①②③④

查看答案和解析>>

同步练习册答案