精英家教网 > 高中数学 > 题目详情
7.在如图所示的计算1+5+9+…+2013的程序框图中,判断框内应填入(  )
A.i≤504B.i≤2009C.i<2013D.i≤2013

分析 分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S的值.

解答 解:程序运行过程中,各变量值如下表所示:
第一圈:S=0+1,i=5,
第二圈:S=1+3,i=9,
第三圈:S=1+3+5,i=13,

依此类推,第503圈:1+3+5+…+2013,i=2017,
退出循环,
其中判断框内应填入的条件是:i≤2013,
故选D.

点评 算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知抛物线C:x2=2py(p>0),P,Q是C上任意两点,点M(0,-1)满足$\overrightarrow{MP}•\overrightarrow{MQ}≥0$,则p的取值范围是(0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合A={x|x2-3x+2>0},B={x|3x-4>0},则A∩B=(  )
A.(-2,-$\frac{4}{3}$)B.(-2,$\frac{4}{3}$)C.(1,$\frac{4}{3}$)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.3-2,21.5,log23三个数中最大的数是21.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(1,$\frac{3}{2}$),离心率e=$\frac{1}{2}$.
(Ⅰ)求椭圆C的方程,
(Ⅱ)设动直线l:y=kx+m与椭圆C相切,切点为T,且直线l与直线x=4相交于点S.试问:在坐标平面内是否存在一定点,使得以ST为直径的圆恒过该定点?若存在,求出该点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知命题p:?x∈R,使sinx-cosx=$\sqrt{3}$,命题q:集合{x|x2-2x+1=0,x∈R}有2个子集,下列结论:
①“p∧q”真命题;②命题“p∧¬q”是假命题;③命题“¬p∨¬q”真命题,正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}{-\frac{3x+2}{x+1},x∈(-1,0]}\\{x,x∈(0,1]}\end{array}\right.$且g(x)=mx+m,若方程g(x)=f(x)在(-1,1]内有且仅有两个不同的根,则实数m的取值范围是(  )
A.(-$\frac{11}{4}$,-2]∪(0,$\frac{1}{2}$]B.(-$\frac{9}{4}$,-2]∪(0,$\frac{1}{2}$]C.(-$\frac{11}{4}$,-2]∪(0,$\frac{2}{3}$]D.(-$\frac{9}{4}$,-2]∪(0,$\frac{2}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设变量x,y满足不等式$\left\{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}\right.$,则x2+y2的最小值是(  )
A.$\frac{3\sqrt{2}}{2}$B.$\frac{9}{2}$C.$\sqrt{5}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}前n项和为Sn,a1=-$\frac{2}{3}$,且Sn+$\frac{1}{Sn}$+2=an(n≥2).
(1)计算S1,S2,S3,S4的值,猜想Sn的解析式;
(2)用数学归纳法证明所得的结论.

查看答案和解析>>

同步练习册答案