精英家教网 > 高中数学 > 题目详情
7.用系统抽样的方法从某校400名学生中抽取容量为20的一个样本,将400名学生随机编为1-400号,按编号顺序平均分为20各组(1-20号,21-40号,…381-400号),若第1组中用抽签的方法确定抽出的号码为12,则第14组抽取的号码为272.

分析 根据系统抽样的定义求出样本间隔进行求解.

解答 解:样本间隔为400÷20=20,
若第1组中用抽签的方法确定抽出的号码为12,则第14组抽取的号码为12+13×20=272,
故答案为:272

点评 本题主要考查系统抽样的应用,根据条件求出样本间隔是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知f(x)=ex+sinx,则f′(x)=(  )
A.lnx+cosxB.lnx-cosxC.ex+cosxD.ex-cosx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2cosx(sinx+cosx),x∈R.
(1)求函数f(x)的单调递增区间;
(2)求函数f(x)在区间$[{0,\frac{π}{2}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设z1=-3+4i,z2=2-3i,则z1+z2在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设随机变量X~N(μ,σ2),且P(X<1)=$\frac{1}{2}$,P(X>2)=p,则P(0<X<1)=$\frac{1}{2}-p$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若正数x,y满足xy+2x+y=8,则x+y的最小值等于2$\sqrt{10}$-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}和{bn}满足:a1=λ,an+1=2an+n,bn=2(an+n+1),cn=(4+2an-an+1)bn,其中λ为实数,n为正整数.
(1)若a1、b2、a3成等差数列,求λ的值;
(2)试判断数列{bn}是否为等比数列,并证明你的结论;
(3)当λ=-1时,设Tn为数列{cn}的前n项和,求Tn及Tn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在区间[-1,1]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax-b2+1有零点的概率为1-$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义:数列{an}对一切正整数n均满足$\frac{{a}_{n}+{a}_{n+2}}{2}$>an+1,称数列{an}为“凸数列”,一下关于“凸数列”的说法:
(1)等差数列{an}一定是凸数列
(2)首项a1>0,公比q>0且q≠1的等比数列{an}一定是凸数列
(3)若数列{an}为凸数列,则数列{an+1-an}是单调递增数列
(4)凸数列{an}为单调递增数列的充要条件是存在n0∈N*,使得a${\;}_{{n}_{0}+1}$>an,其中说法正确的是(  )
A.(1)(2)B.(2)(3)C.(2)(4)D.(3)(4)

查看答案和解析>>

同步练习册答案