| A. | 5x-12y+38=0 | B. | 5x+12y+38=0 | ||
| C. | 5x-12y+38=0或x=2 | D. | 5x+12y+38=0或x=4 |
分析 联立$\left\{\begin{array}{l}{x+y-1=0}\\{{x}^{2}+{y}^{2}=4}\end{array}\right.$,解得交点,可得:圆C的标准方程为:(x+2)2+(y+2)2=16.过点(2,4)向圆C作切线,直线x=2时满足条件.切线斜率存在时,设切线方程为:y-4=k(x-2),即kx-y+4-2k=0,可得$\frac{|-2k+2+4-2k|}{\sqrt{{k}^{2}+1}}$=4,解得k即可得出.
解答 解:联立$\left\{\begin{array}{l}{x+y-1=0}\\{{x}^{2}+{y}^{2}=4}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{1+\sqrt{7}}{2}}\\{y=\frac{1-\sqrt{7}}{2}}\end{array}\right.$,$\left\{\begin{array}{l}{x=\frac{1-\sqrt{7}}{2}}\\{y=\frac{1+\sqrt{7}}{2}}\end{array}\right.$,
∴圆C的标准方程为:(x+2)2+(y+2)2=$(\frac{1+\sqrt{7}}{2}+2)^{2}$+$(\frac{1-\sqrt{7}}{2}+2)^{2}$=16.
过点(2,4)向圆C作切线,直线x=2时满足条件.
切线斜率存在时,设切线方程为:y-4=k(x-2),即kx-y+4-2k=0,
则$\frac{|-2k+2+4-2k|}{\sqrt{{k}^{2}+1}}$=4,解得k=$\frac{5}{12}$.可得切线方程为:5x-12y+38=0.
综上可得:切线方程方程为:5x-12y+38=0或x=2.
故选:C.
点评 本题考查了直线与圆相交交点、直线与圆相切的性质、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 数学成绩好 | 数学成绩一般 | 总计 | |
| 物理成绩好 | |||
| 物理成绩一般 | |||
| 总计 |
| P(K2≥k) | 0.050 | 0.010 | 0.001 |
| k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 栏目1 | 栏目2 | 合计 | |
| 家长 | |||
| 学生 | |||
| 合计 |
| P(K2≥x0) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
| x0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1+ln2,3] | B. | (ln2,3] | C. | (0,1+ln2) | D. | (0,3] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com