精英家教网 > 高中数学 > 题目详情
3.已知直线l的参数方程为$\left\{\begin{array}{l}x=\sqrt{3}t+\sqrt{3}\\ y=-3t+2\end{array}\right.$(t为参数t∈R)以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ,θ∈[0,2π).
(1)求直线l的普通方程与曲线C的直角坐标方程.
(2)求曲线C上的点到直线l的距离的最小值和最大值.

分析 (1)直线l的参数方程消去t,能求出直线l的普通方程;曲线C的极坐标方程转化为ρ2=2ρsinθ,由此能求出曲线C的直角坐标方程.
(2)圆心(0,1)到直线l的距离d=2,由此能求出曲线C上的点到直线l的距离的最小值和最大值.

解答 解:(1)∵直线l的参数方程为$\left\{\begin{array}{l}x=\sqrt{3}t+\sqrt{3}\\ y=-3t+2\end{array}\right.$(t为参数t∈R),
∴消去t,得直线l的普通方程为:$\sqrt{3}x+y-5=0$…2分,
∵曲线C的极坐标方程为ρ=2sinθ,θ∈[0,2π),即ρ2=2ρsinθ
∴曲线C的直角坐标方程为x2+y2-2y=0或x2+(y-1)2=1…4分.
(2)圆心(0,1)到直线l的距离为$d=\frac{|1-5|}{2}=2$
∴曲线C上的点到直线l的最大距离为2+1=3.…8分,
最小距离为2-1=1.…10分.

点评 本题考查直线的普通方程、曲线的直角坐标方程的求法,考查圆上的点到直线的最大距离和最小距离的求法,考查参数方程、直角坐标方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知抛物线C:y=x2,点P(0,2),A、B是抛物线上两个动点,点P到直线AB的距离为1.
(1)若直线AB的倾斜角为$\frac{π}{3}$,求直线AB的方程;
(2)求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知a,b,c是△ABC的三边,a=4,b∈(4,6),sin2A=sinC,则c的取值范围为($4\sqrt{2}$,2$\sqrt{10}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若函数f(x)=|x+1|+|x+a|的最小值为3,则实数a的值为(  )
A.A、B.2C.2或-4D.4或-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知回归直线方程为$\widehat{y}$=0.5x-0.18,则当x=20时,y的估计值是9.82.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆M过点A(1,3),B(4,2),且圆心在直线y=x-3上.
(Ⅰ)求圆M的方程;
(Ⅱ)若过点(-4,1)的直线l与圆M相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)=$\frac{2x}{2-x}$,设f1(x)=f(x),fn(x)=fn-1[fn-1(x)](n>1,n∈N*),若fm(x)=$\frac{x}{1-256x}$(m∈N*),则m等于(  )
A.9B.10C.11D.126

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知随机变量ξ服从正态分布N(3,σ2),若P(ξ<2)=0.3,则P(2<ξ<4)的值等于(  )
A.0.5B.0.2C.0.3D.0.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知数列{an}的通项公式为${a_n}=lg\frac{{{n^2}+3n+2}}{{{n^2}+3n}},n∈{N^*}$,则数列{an}的前n项和Sn=(  )
A.$lg\frac{3}{n+3}$B.$lg\frac{2}{n}$C.$lg\frac{{3({n+1})}}{n+3}$D.$lg\frac{{2({n+2})}}{n}$

查看答案和解析>>

同步练习册答案