分析 (Ⅰ)取AB中点O,连接OD,B1O,推导出B1O⊥AB,B1D⊥AB,从而AB⊥面B1OD,进而AB⊥OD,再求出AC⊥AB,由此能证明AC⊥面ABB1A1.
(Ⅱ)以O为坐标原点,分别以OB、OD、OB1方向为x、y、z轴建立空间直角坐标系,利用向量法能求出二面角C1-AD-C的余弦值.
解答 (本小题满分12分)
证明:(Ⅰ)取AB中点O,连接OD,B1O,![]()
△B1BO中,AB=2,B1B=2,∠B1BA=60°,故△AB1B是等边三角形,
∴B1O⊥AB,
又B1D⊥AB,而B1O与B1D相交于B1,
∴AB⊥面B1OD,
故AB⊥OD,又OD∥AC,所以AC⊥AB,
又∵侧面ABB1A1⊥底面ABC于AB,AC在底面ABC内,
∴AC⊥面ABB1A1.…(6分)
解:(Ⅱ)以O为坐标原点,分别以OB、OD、OB1方向为x、y、z轴建立空间直角坐标系,
C(-1,2,0),A(-1,0,0),D(0,1,0),B(1,0,0),B1(0,0,$\sqrt{3}$),
∴$\overrightarrow{B{B_1}}=(-1,0,\sqrt{3})$,$\overrightarrow{AC}=(0,2,0)$,
$\overrightarrow{A{C_1}}=\overrightarrow{AC}+\overrightarrow{C{C_1}}=\overrightarrow{AC}+\overrightarrow{B{B_1}}=(-1,2,\sqrt{3})$,$\overrightarrow{AD}=(1,1,0)$,
设面ADC1的法向量为$\overrightarrow m=(x,y,z)$,
依题意有:$\left\{{\begin{array}{l}{\overrightarrow m•\overrightarrow{AD}=x+y=0}\\{\overrightarrow m•\overrightarrow{A{C_1}}=-x+2y+\sqrt{3}z=0}\end{array}}\right.$,令x=1,则y=-1,$z=\sqrt{3}$,∴$\overrightarrow m=(1,-1,\sqrt{3})$,…(9分)
又面ADC的法向量为$\overrightarrow n=(0,0,1)$,…(10分)
∴$cos<\overrightarrow m,\overrightarrow n>=\frac{{\sqrt{3}}}{{\sqrt{1+1+3}}}=\frac{{\sqrt{15}}}{5}$,
∴二面角C1-AD-C的余弦值为$\frac{{\sqrt{15}}}{5}$. …(12分)
点评 本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{2}}{2}$-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com