精英家教网 > 高中数学 > 题目详情

【题目】已知函数 轴的交点为 ,且图象上两对称轴之间的最小距离为 ,则使 成立的 的最小值为( )
A.
B.
C.
D.

【答案】A
【解析】由题意:函数f(x)与y轴的交点为(0,1),可得:1=2sinφ,sinφ=
∵0<φ< ,∴φ=
两对称轴之间的最小距离为 可得周期T=π,解得:ω=2.
所以:f(x)=2sin(2x+ ),
由f(x+t)﹣f(﹣x+t)=0,
可得:函数图象关于x=t对称.求|t|的最小值即可是求对称轴的最小值,
∵f(x)=2sin(2x+ )的对称轴方程为:2x+ = (k∈Z),
可得:x= 时最小,
故答案为:A .
由题意函数与y轴的交点为(0,1),可得sinφ的值,解出φ,根据两对称轴的最小距离得出周期,解得ω,从而得到f(x)的解析式,由f(x+t)-f(-x+t)=0,可得函数关于x=t对称,可得最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如果函数y=f(x)的导函数的图象如图所示,给出下列判断:

①函数y=f(x)在区间 内单调递增;
②函数y=f(x)在区间 内单调递减;
③函数y=f(x)在区间(4,5)内单调递增;
④当x=2时,函数y=f(x)有极小值;
⑤当x= 时,函数y=f(x)有极大值.
则上述判断中正确的是( )
A.①②
B.②③
C.③④⑤
D.③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)若曲线 处的切线经过坐标原点,求 及该切线的方程;
(2)设 ,若函数 的值域为 ,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为常数)与 轴有唯一的公关点
(Ⅰ)求函数 的单调区间;
(Ⅱ)曲线 在点 处的切线斜率为 ,若存在不相等的正实数 ,满足 ,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂为检验车间一生产线是否工作正常,现从生产线中随机抽取一批零件样本,测量尺寸(单位: )绘成频率分布直方图如图所示:

(Ⅰ)求该批零件样本尺寸的平均数 和样本方差 (同一组中的数据用该组区间的中点值作代表);
(Ⅱ)若该批零件尺寸 服从正态分布 ,其中 近似为样本平均数 近似为样本方差 ,利用该正态分布求
(Ⅲ)若从生产线中任取一零件,测量尺寸为 ,根据 原则判断该生产线是否正常?
附: ;若 ,则 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为 元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

下浮10%

上两个年度未发生有责任道路交通事故

下浮20%

上三个及以上年度未发生有责任道路交通事故

下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

上一个年度发生两次及两次以上有责任道路交通事故

上浮10%

上一个年度发生有责任道路交通死亡事故

上浮30%

某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

数量

10

5

5

20

15

5

以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
求一辆普通6座以下私家车(车险已满三年)在下一年续保时保费高于基本保费的频率;
某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元.且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选两辆车,求这两辆车恰好有一辆为事故车的概率;
②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知y=f(x)是偶函数,而y=f(x+1)是奇函数,且对任意0≤x≤1,都有f(x)≥0,f(x)是增函数,则a=f(2010),b=f( ),c=﹣f( )的大小关系是(
A.b<c<a
B.c<b<a
C.a<c<b
D.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(某保险公司有一款保险产品的历史户获益率(获益率=获益÷保费收入)的频率分布直方图如图所示:

(Ⅰ)试估计平均收益率;
(Ⅱ)根据经验若每份保单的保费在 元的基础上每增加 元,对应的销量 (万份)与 (元)有较强线性相关关系,从历史销售记录中抽样得到如下 的对应数据:

(元)

销量 (万份)

(ⅰ)根据数据计算出销量 (万份)与 (元)的回归方程为
(ⅱ)若把回归方程 当作 的线性关系,用(Ⅰ)中求出的平均获益率估计此产品的获益率,每份保单的保费定为多少元时此产品可获得最大获益,并求出该最大获益.
参考公示:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 的定义域为 ,若函数 满足下列两个条件,则称 在定义域 上是闭函数.① 上是单调函数;②存在区间 ,使 上值域为 .如果函数 为闭函数,则 的取值范围是.

查看答案和解析>>

同步练习册答案