【题目】已知函数
与
轴的交点为
,且图象上两对称轴之间的最小距离为
,则使
成立的
的最小值为( )
A.![]()
B.![]()
C.![]()
D.![]()
【答案】A
【解析】由题意:函数f(x)与y轴的交点为(0,1),可得:1=2sinφ,sinφ=
,
∵0<φ<
,∴φ=
,
两对称轴之间的最小距离为
可得周期T=π,解得:ω=2.
所以:f(x)=2sin(2x+
),
由f(x+t)﹣f(﹣x+t)=0,
可得:函数图象关于x=t对称.求|t|的最小值即可是求对称轴的最小值,
∵f(x)=2sin(2x+
)的对称轴方程为:2x+
=
(k∈Z),
可得:x=
时最小,
故答案为:A .
由题意函数与y轴的交点为(0,1),可得sinφ的值,解出φ,根据两对称轴的最小距离得出周期,解得ω,从而得到f(x)的解析式,由f(x+t)-f(-x+t)=0,可得函数关于x=t对称,可得最小值.
科目:高中数学 来源: 题型:
【题目】如果函数y=f(x)的导函数的图象如图所示,给出下列判断:![]()
①函数y=f(x)在区间
内单调递增;
②函数y=f(x)在区间
内单调递减;
③函数y=f(x)在区间(4,5)内单调递增;
④当x=2时,函数y=f(x)有极小值;
⑤当x=
时,函数y=f(x)有极大值.
则上述判断中正确的是( )
A.①②
B.②③
C.③④⑤
D.③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
为常数)与
轴有唯一的公关点
.
(Ⅰ)求函数
的单调区间;
(Ⅱ)曲线
在点
处的切线斜率为
,若存在不相等的正实数
,满足
,证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂为检验车间一生产线是否工作正常,现从生产线中随机抽取一批零件样本,测量尺寸(单位:
)绘成频率分布直方图如图所示:![]()
(Ⅰ)求该批零件样本尺寸的平均数
和样本方差
(同一组中的数据用该组区间的中点值作代表);
(Ⅱ)若该批零件尺寸
服从正态分布
,其中
近似为样本平均数
,
近似为样本方差
,利用该正态分布求
;
(Ⅲ)若从生产线中任取一零件,测量尺寸为
,根据
原则判断该生产线是否正常?
附:
;若
,则
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为
元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:
交强险浮动因素和浮动费率比率表 | ||
浮动因素 | 浮动比率 | |
| 上一个年度未发生有责任道路交通事故 | 下浮10% |
| 上两个年度未发生有责任道路交通事故 | 下浮20% |
| 上三个及以上年度未发生有责任道路交通事故 | 下浮30% |
| 上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% |
| 上一个年度发生两次及两次以上有责任道路交通事故 | 上浮10% |
| 上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 |
|
|
|
|
|
|
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
求一辆普通6座以下私家车(车险已满三年)在下一年续保时保费高于基本保费的频率;
某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元.且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选两辆车,求这两辆车恰好有一辆为事故车的概率;
②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知y=f(x)是偶函数,而y=f(x+1)是奇函数,且对任意0≤x≤1,都有f(x)≥0,f(x)是增函数,则a=f(2010),b=f(
),c=﹣f(
)的大小关系是( )
A.b<c<a
B.c<b<a
C.a<c<b
D.a<b<c
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(某保险公司有一款保险产品的历史户获益率(获益率=获益÷保费收入)的频率分布直方图如图所示:![]()
(Ⅰ)试估计平均收益率;
(Ⅱ)根据经验若每份保单的保费在
元的基础上每增加
元,对应的销量
(万份)与
(元)有较强线性相关关系,从历史销售记录中抽样得到如下
组
与
的对应数据:
|
|
|
|
|
|
销量 |
|
|
|
|
|
(ⅰ)根据数据计算出销量
(万份)与
(元)的回归方程为
;
(ⅱ)若把回归方程
当作
与
的线性关系,用(Ⅰ)中求出的平均获益率估计此产品的获益率,每份保单的保费定为多少元时此产品可获得最大获益,并求出该最大获益.
参考公示: ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
的定义域为
,若函数
满足下列两个条件,则称
在定义域
上是闭函数.①
在
上是单调函数;②存在区间
,使
在
上值域为
.如果函数
为闭函数,则
的取值范围是.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com