精英家教网 > 高中数学 > 题目详情
1.已知cosα=-$\frac{{\sqrt{3}}}{2}$,且α∈[0,π),那么α的值等于$\frac{5π}{6}$.

分析 根据cosα=-$\frac{{\sqrt{3}}}{2}$,且α∈[0,π),可得α的值.

解答 解:根据cosα=-$\frac{{\sqrt{3}}}{2}$,且α∈[0,π),可得α=π-$\frac{π}{6}$=$\frac{5π}{6}$,
故答案为:$\frac{5π}{6}$.

点评 本题主要考查根据三角函数的值求角,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知a∈R,复数z=(a-2i)(1+i)(i为虚数单位)的共轭复数$\overline z$在复平面内对应的点在第四象限,则a的取值范围为(-2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足(an+1-1)(an-1)=3(an-an+1),a1=2,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若实数a,b,c,d满足(b+2a2-6lna)2+|2c-d+6|=0,(a-c)2+(b-d)2的最小值为m,则函数f(x)=ex+$\frac{1}{5}$mx-3零点所在的区间为(  )
A.$({-\frac{1}{4},0})$B.$({0,\frac{1}{4}})$C.$({\frac{1}{4},\frac{1}{2}})$D.$({\frac{1}{2},1})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.对定义在区间D上的函数f(x)和g(x),如果对任意x∈D,都有|f(x)-g(x)|≤1成立,那么称函数f(x)在区间D上可被G(X)替代,D称为“替代区间”.给出以下命题:
①f(x)=x2+1在区间(-∞,+∞)上可被g(x)=x2$+\frac{1}{2}$替代;
②f(x)=x可被g(x)=1-$\frac{1}{4x}$替代的一个“替代区间”为[$\frac{1}{4}$,$\frac{3}{2}$];
③f(x)=lnx在区间[1,e]可被g(x)=x-b替代,则e-2≤b≤2;
④f(x)=lg(ax2+x)(x∈D1),g(x)=sinx(x∈D2),则存在实数a(a≠0),使得f(x)在区间D1∩D2 上被g(x)替代;
其中真命题的有①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如果函数y=a2x+2ax-1(a>0,a≠1)在区间[-1,1]上的最大值是14,则实数a的值为3或$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知角α的终边在直线y=-3x上,求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知扇形的中心角的角度是120°,半径为2,则扇形的弧长是$\frac{4}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.将甲、乙、丙等六人分配到A,B,C三个社区服务,每个社区2人,要求甲必须在A社区,乙和丙均不能在C社区,则不同的安排种数为9.

查看答案和解析>>

同步练习册答案