精英家教网 > 高中数学 > 题目详情
11.已知公差不为零的等差数列{an},若a1=1,且a1,a2,a5成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=2n,求数列{bn-an}的前n项和Sn

分析 (1)通过a2=1+d、a5=1+4d,利用a1,a2,a5成等比数列计算可知公差d=2,进而可得结论;
(2)分别利用等差数列、等比数列的求和公式计算,相加即可.

解答 解:(1)依题意可知,a2=1+d,a5=1+4d,
∵a1,a2,a5成等比数列,
∴(1+d)2=1+4d,即d2=2d,
解得:d=2或d=0(舍),
∴an=1+2(n-1)=2n-1;
(2)由(1)可知等差数列{an}的前n项和Pn=$\frac{n(1+2n-1)}{2}$=n2
∵bn=2n
∴数列{bn}的前n项和Qn=$\frac{2(1-{2}^{n})}{1-2}$=2n+1-2,
∴Sn=2n+1-n2-2.

点评 本题考查数列的通项及前n项和,考查等差数列、等比数列的求和公式,考查分组求和法,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知O,N,P在所在△ABC的平面内,且$|{\overrightarrow{OA}}|=|{\overrightarrow{OB}}|=|{\overrightarrow{OC}}|,\overrightarrow{NA}+\overrightarrow{NB}+\overrightarrow{NC}$=$\overrightarrow 0$,且$\overrightarrow{PA}•\overrightarrow{PB}=\overrightarrow{PB}•\overrightarrow{PC}=\overrightarrow{PA}•\overrightarrow{PC}$,则O,N,P分别是△ABC的(  )
A.重心  外心  垂心B.重心  外心  内心
C.外心  重心  垂心D.外心  重心  内心

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知p:?x∈R,mx2+1>0,q:?x∈R,x2+mx+1≤0.
(1)写出命题p的否定?p,命题q的否定?q;
(2)若?p∨?q为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,四棱锥P  ABCD的底面ABCD是平行四边形,BD=$\sqrt{2}$,PC=$\sqrt{7}$,PA=$\sqrt{5}$,∠CDP=90°,E、F分别是棱AD、PC的中点.
(1)证明:EF∥平面PAB;
(2)求BD与PA所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知数列{an}中,a1=1,前n项和为Sn,且点P(an,an+1)在直线y=x+1上,则$\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+…+\frac{1}{S_n}$=(  )
A.$\frac{2n}{n+1}$B.$\frac{2}{n(n+1)}$C.$\frac{n(n+1)}{2}$D.$\frac{n}{2(n+1)}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.下列命题:
①若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5=31;
②随机变量X服从正态分布N(1,2),则P(X<0)=P(X>2);
③若二项式${({x+\frac{2}{x^2}})^n}$的展开式中所有项的系数之和为243,则展开式中x-4的系数是40
④连掷两次骰子得到的点数分别为m,n,记向量$\overrightarrow{a}$=(m,n)与向量$\overrightarrow{b}$=(1,-1)的夹角为θ,则θ∈(0,$\frac{π}{2}$]的概率是$\frac{7}{12}$.
正确命题的序号为①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某校高三共有三个班,其各班人数如表:
班级男生数女生数总数
高三(1)302050
高三(2)303060
高三(3)352055
(1)从三个班中选一名学生会主席,有多少种不同的选法?
(2)从(1)班、(2)班男生中或从(3)班女生中选一名学生任学生会生活部部长,有多少种不同的选法?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.将点的极坐标(2,$\frac{π}{6}$)化为直角坐标为($\sqrt{3}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)计算:$\frac{{(1-i)+(2+\sqrt{5}i)}}{i}$(其中i为虚数单位);
(2)若复数Z=(2m2+m-1)+(4m2-8m+3)i,(m∈R)的共轭复数$\overline Z$对应的点在第一象限,求实数m的取值集合.

查看答案和解析>>

同步练习册答案