精英家教网 > 高中数学 > 题目详情
1.在二项式(${\frac{1}{2}$+2x)n的展开式中,前3项的二项式系数之和等于79,则展开式中x4的系数为$\frac{495}{16}$.

分析 由${∁}_{n}^{0}+{∁}_{n}^{1}+{∁}_{n}^{2}$=79,化简解出n=12.再利用二项式定理的通项公式即可得出.

解答 解:∵${∁}_{n}^{0}+{∁}_{n}^{1}+{∁}_{n}^{2}$=79,
化为n2+n-156=0,n∈N*
解得n=12.
∴$(\frac{1}{2}+2x)^{12}$的展开式中的通项公式Tr+1=${∁}_{12}^{r}(\frac{1}{2})^{12-r}(2x)^{r}$=22r-12${∁}_{12}^{r}$xr
令r=4,则展开式中x4的系数=${2}^{-4}×{∁}_{12}^{4}$=$\frac{495}{16}$.
故答案为:$\frac{495}{16}$.

点评 本题考查了二项式定理的性质及其应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知y=f(x)为定义在R上的单调递增函数,y=f′(x)是其导函数,若对任意x∈R的总有$\frac{f(x-1)}{f′(x-1)}$<x,则下列大小关系一定正确的是(  )
A.$\frac{f(e)}{e+1}$>$\frac{f(π)}{π+1}$B.$\frac{f(e)}{e+1}$<$\frac{f(π)}{π+1}$C.$\frac{f(e)}{e+2}$>$\frac{f(π)}{π+2}$D.$\frac{f(e)}{e+2}$<$\frac{f(π)}{π+2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.tan$\frac{9π}{8}$=$\sqrt{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设全集U={-2,-1,0,1,2},A={-2,1,2},则∁UA={-1,0}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若复数z满足z2+4=0,则z=±2i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知实数x,y满足-$\frac{π}{4}$≤x≤$\frac{π}{4}$,-$\frac{π}{4}$≤y≤$\frac{π}{4}$,若2•3x+sinx-2=0,9y+sinycosy-1=0,则cos(x-2y)的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知一个圆锥的底面积为2π,侧面积为4π,则该圆锥的体积为$\frac{2\sqrt{6}}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an}的前n为Sn满足Sn=$\frac{n}{2}$an,且a2≠0,则$\frac{{{S_{2015}}}}{{{S_{2016}}}}$等于(  )
A.$\frac{2015}{2016}$B.$\frac{1007}{1008}$C.2015D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足:a1=a2=a3=k(常数 k>0),an+1=$\frac{k+{a}_{n}{a}_{n-1}}{{a}_{n-2}}$(n≥3,n∈N*).数列{bn}满足:bn=$\frac{{a}_{n}+{a}_{n+2}}{{a}_{n+1}}$(n∈N*).
(1)求 b1,b2,b3,b4的值;
(2)求出数列{bn}的通项公式;
(3)问:数列{an}的每一项能否均为整数?若能,求出k的所有可能值;若不能,请说明理由.

查看答案和解析>>

同步练习册答案