精英家教网 > 高中数学 > 题目详情
20.在△ABC中,∠A=90°,AB=1,则$\overrightarrow{AB}$•$\overrightarrow{BC}$等于(  )
A.1B.-1C.0D.$\sqrt{2}$

分析 可画出图形,根据条件可得到$\overrightarrow{AB}•\overrightarrow{AC}=0$,${\overrightarrow{AB}}^{2}=1$,而$\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}$,带入$\overrightarrow{AB}•\overrightarrow{BC}$进行数量积的运算即可求出$\overrightarrow{AB}•\overrightarrow{BC}$的值.

解答 解:如图,

∵∠A=90°;
∴$\overrightarrow{AB}•\overrightarrow{AC}=0$;
又AB=1;
∴$\overrightarrow{AB}•\overrightarrow{BC}$=$\overrightarrow{AB}•(\overrightarrow{AC}-\overrightarrow{AB})$
=$\overrightarrow{AB}•\overrightarrow{AC}-{\overrightarrow{AB}}^{2}$
=0-1
=-1.
故选:B.

点评 考查向量垂直的充要条件,向量减法的几何意义,以及向量数量积的运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知直线l的参数方程为$\left\{\begin{array}{l}x=-t\\ y=-1+t\end{array}$(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=$\sqrt{2}$cos(θ+$\frac{π}{4}$).
(Ⅰ)写出直线l的极坐标方程;
(Ⅱ)求直线l与曲线C交点的极坐标(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=|-x2+4|,若方程f(x)-2a=1恰有两个实数根,则a的取值范围是{a|a>$\frac{3}{2}$或a=-$\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.数列{an}满足:a1=1,且对任意的m,n∈N+都有am+n=am+an+m•n,则$\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+…+\frac{1}{{{a_{2016}}}}$=(  )
A.$\frac{2015}{2016}$B.$\frac{2015}{1008}$C.$\frac{2016}{2017}$D.$\frac{4032}{2017}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.数列{an}满足a1=1,an-an-1=$\frac{1}{{2}^{n-1}}$(n∈N*),则an=2-$(\frac{1}{2})^{n-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知命题p:实数m使函数f(x)=$\frac{1}{3}$x3-(m-1)x2-4mx+1在[1,3]上不单调,命题q:实数m满足方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{2-m}$=1表示椭圆.
(1)若p∧q为真,求m的取值范围;
(2)若p∨q为真,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.满足不等式0≤x2-2x≤15的x的取值范围是[-3,0]∪[2,5].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.给出以下四个类比:
①已知a,b为实数,若a2=b2,则a=±b可以类比为:已知z1,z2为虚数,若$z_1^2=z_2^2$,则z1=±z2
②已知a,b为实数,若a-b>0,则a>b可以类比为:已知z1,z2为虚数,若z1-z2>0,则z1>z2
③已知a,b为实数,若|a|=|b|,则a=±b可以类比为:已知z1,z2为虚数,若|z1|=|z2|,则z1=±z2
其中类比结论正确的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.等差数列{an},{bn}的前n项和分别为Sn,Tn,若$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n}{3n+1}$,则$\frac{{a}_{5}}{{b}_{6}}$=$\frac{9}{17}$.

查看答案和解析>>

同步练习册答案