精英家教网 > 高中数学 > 题目详情
14.已知两点A(x1,y1),B(x2,y2)都是直线$\sqrt{3}$x-y-1=0上的动点,且|x1-x2|=2,则|AB|=4.

分析 直接利用两点间的距离公式求解即可.

解答 解:∵两点A(x1,y1),B(x2,y2)都是直线$\sqrt{3}$x-y-1=0上的动点,且|x1-x2|=2,
∴|y1-y2|=$\sqrt{3}$|x1-x2|=2$\sqrt{3}$,
∴|AB|=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$=4,
故答案为:4.

点评 本题考查两点间的距离公式,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=|x-a|+|${\frac{1}{2}$x+1|的最小值为2.
(Ⅰ)求实数a的值;
(Ⅱ)若a>0,求不等式f(x)≤4的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),过原点的直线与椭圆交于A、B两点,点F为椭圆的右焦点,且满足AF⊥BF,设∠ABF=α,且α∈[$\frac{π}{12}$,$\frac{π}{6}$],则椭圆离心率e的取值范围为(  )
A.[$\sqrt{3}$-1,$\frac{2}{3}$]B.[$\sqrt{3}$-1,$\frac{\sqrt{6}}{3}$]C.[2-$\sqrt{3}$,$\frac{2}{3}$]D.[2-$\sqrt{3}$,$\frac{\sqrt{6}}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知tanx=2,则$\frac{sin2x+2cos2x}{{2{{cos}^2}x-3sin2x-1}}$的值是(  )
A.$\frac{1}{15}$B.$\frac{2}{15}$C.$-\frac{2}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知复数$\frac{a+i}{1-i}$=i,则实数a=(  )
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四棱锥P-ABCD中,AD∥BC,AD⊥DC,AD=2BC=2CD=2,侧面APD为等腰直角三角形,PA⊥PD,平面PAD⊥平面ABCD.
(Ⅰ)求证:PA⊥面PCD;
(Ⅱ)求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x-2|,g(x)=-|x+3|+m.
(1)当m=7时,解关于x的不等式f(x)-g(x)>0;
(2)若函数f(x)的图象恒在函数g(x)图象的上方,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,长方体ABCD-A1B1C1D1中,AB=BC=2a,AA1=3a.
(Ⅰ)求证:平面A1BC1⊥平面BDD1B1
(Ⅱ)求点B1到平面A1BC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.命题“对任意x≤0,都有x2<0”的否定为存在x0≤0,都有$x_0^2≥0$.

查看答案和解析>>

同步练习册答案