精英家教网 > 高中数学 > 题目详情
4.由0,1,2,3,4,5这六个数字.能组成156个无重复数字的四位偶数?

分析 当末位是数字0时,可以组成A53个数字;当末位不是0时,末位可以是2,4,有两种选法,首位有4种选法,中间两位可以从余下的4个数字中选两个,共有C21C41A42种结果,根据计数原理得到结果.

解答 解:(1)本题需要分类来解,
当末位是数字0时,可以组成A53=60个,
当末位不是0时,末位可以是2,4,有两种选法,
首位有4种选法,中间两位可以从余下的4个数字中选两个,共有C21C41A42=96种结果,
根据分类计数原理知共有60+96=156种结果,
故答案为:156.

点评 本题主要考查排列、组合以及简单计数原理的应用,体现了分类讨论的数学思想.数字问题是排列中经常见到问题,条件变换多样,把排列问题包含在数字问题中,解题的关键是看清题目的实质,注意数字0的双重限制,即可在最后一位构成偶数,又不能放在首位.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.圆x2+y2+2x=0的圆心坐标和半径分别为(  )
A.(1,0),1B.(-1,0),1C.(0,1),1D.(1,0),2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.用0、1、2、3、4这五个数字,可以组成多少个满足下列条件的整数?
(Ⅰ)所有的四位数;
(Ⅱ)比21000大的没有重复的五位数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设圆弧所对的圆心角为30°,半径为r=3,则弧长l=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在正项等比数列{an}中,a3=1,a7=9,则a5=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2-1,g(x)=$\left\{\begin{array}{l}x-1,x>0\\ 2-x,x<0\end{array}\right.$.
(1)求f(g(2))和g(f(2))的值;
(2)求g(x)的值域;
(3)求f(g(x))的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.过椭圆$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1的右焦点F作两条垂直的弦AB,CD.设AB,CD的中点分别为M,N.求证:直线MN必过定点,并求出这个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.用数学归纳法证明:1×4+2×7+3×10+…+n(3n+1)=n(n+1)2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.数列{an}中 a1=2,an+1=$\frac{n+1}{2n}$an(n∈N*).
(1)求数列{an}的通项公式;
(2)设Sn=$\sum_{i=1}^{n}$$\frac{{a}_{i}}{i}$是否存在实数c,使$\frac{{S}_{n+1}-c}{{S}_{n}-c}$>2对于n∈N*恒成立.若存在,求出实数c的取值范围,不存在,说明理由.
(3)设bn=$\frac{{a}_{n}^{2}}{16{n}^{2}{-a}_{n}^{2}}$.若数列{bn}前n项和为Tn,求证:Tn<$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案