精英家教网 > 高中数学 > 题目详情
10.如果|cos θ|=$\frac{1}{5}$,$\frac{7π}{2}$<θ<4π,那么cos$\frac{θ}{2}$的值等于(  )
A.$\frac{\sqrt{10}}{5}$B.-$\frac{\sqrt{10}}{5}$C.$\frac{\sqrt{15}}{5}$D.-$\frac{\sqrt{15}}{5}$

分析 利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,求得cosθ的值.再利用二倍角公式,求得cos$\frac{θ}{2}$的值.

解答 解:|cos θ|=$\frac{1}{5}$,$\frac{7π}{2}$<θ<4π,∴cosθ=$\frac{1}{5}$,θ∈($\frac{7π}{2}$,$\frac{11π}{3}$),$\frac{θ}{2}$∈($\frac{7π}{4}$,$\frac{11π}{6}$),
∴cos$\frac{θ}{2}$>0,由cosθ=2${cos}^{2}\frac{θ}{2}$-1=$\frac{1}{5}$,得cos$\frac{θ}{2}$=$\frac{\sqrt{15}}{5}$,
故选:C.

点评 本题主要考查同角三角函数的基本关系,二倍角公式的应用,以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若复数z=1+i,$\overline z$为z的共轭复数,则z•$\overline z$=(  )
A.0B.2C.$\sqrt{2}$D.2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.A={a|f(x)=$\frac{1}{\sqrt{a{x}^{2}+3ax+1}}$的定义域为R},B={a|3a2+5a-2<0},则A∩B=(  )
A.(0,$\frac{4}{9}$)B.[0,$\frac{1}{3}$)C.(-2,0)D.($\frac{1}{3}$,$\frac{4}{9}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.证明$\frac{n+2}{2}<1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+…+\frac{1}{2^n}<n+1(n>1)$,当n=2时,中间式子等于(  )
A.1B.$1+\frac{1}{2}$C.$1+\frac{1}{2}+\frac{1}{3}$D.$1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.复数z=(m2-m-4)+(m2-5m-6)i(m∈R),如果z是纯虚数,那么m=$\frac{1±\sqrt{17}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)解不等式|x-1|+|x+2|≥5的解集.
(2)若关于x的不等式|ax-2|<3的解集为{x|-$\frac{5}{3}$<x<$\frac{1}{3}$},求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,0<φ<π)是奇函数,直线y=$\sqrt{2}$与函数f(x)的图象的两个相邻交点的距离为$\frac{π}{2}$,则(  )
A.f(x)在(0,$\frac{π}{4}$)上单调递减B.f(x)在($\frac{π}{8}$,$\frac{3π}{8}$)上单调递减
C.f(x)在(0,$\frac{π}{4}$)上单调递增D.f(x)在($\frac{π}{8}$,$\frac{3π}{8}$)上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数$f(x)={e^2}x+\frac{1}{x},g(x)=\frac{ex}{{{e^{x-1}}}}$,对任意x1,x2∈(0,+∞),不等式(k+1)g(x1)≤kf(x2)(k>0)恒成立,则实数k的取值范围是(  )
A.[1,+∞)B.(2,+∞]C.(0,2)D.(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆C过点M(0,-2),N(3,1),且圆心C在直线x+2y+1=0上.
(Ⅰ)求圆C的方程;
(Ⅱ)过点(6,3)作圆C的切线,求切线方程;
(Ⅲ)设直线l:y=x+m,且直线l被圆C所截得的弦为AB,以AB为直径的圆C1过原点,求直线l的方程.

查看答案和解析>>

同步练习册答案