精英家教网 > 高中数学 > 题目详情
3.数列{an}满足${S_n}=2n-{a_n}({n∈{N^*}})$
(1)计算a1,a2,a3,a4
(2)猜想an的表达式,并用数学归纳法证明你的结论.

分析 (1)根据Sn=2n-an,利用递推公式,求出a2,a3,a4
(2)总结出规律求出an,然后利用归纳法进行证明,检验n=1时等式成立,假设n=k时命题成立,证明当n=k+1时命题也成立.

解答 解:(1)当n=1时,a1=S1=1.
当n=2时,a1+a2=S2=2×2-a2,∴a2=$\frac{3}{2}$.
当n=3时,a1+a2+a3=S3=2×3-a3,∴a3=$\frac{7}{4}$.
当n=4时,a1+a2+a3+a4=S4=2×4-a4,∴a4=$\frac{15}{8}$,
由此猜想an=$\frac{{2}^{n}-1}{{2}^{n-1}}$(n∈N*).                          
(2)证明:①当n=1时,a1=S1=1,结论成立.
②假设n=k(k≥1且k∈N*)时,结论成立,即ak=$\frac{{2}^{k}-1}{{2}^{k-1}}$
那么n=k+1(k≥1且k∈N*)时,ak+1=Sk+1-Sk=2(k+1)-ak+1-2k+ak=2+ak-ak+1
∴2ak+1=2+ak=2+$\frac{{2}^{k}-1}{{2}^{k-1}}$=$\frac{{2}^{k+1}-1}{{2}^{k-1}}$.
∴ak+1=$\frac{{2}^{k-1}-1}{{2}^{k}}$,
由①②可知,对n∈N*,an=$\frac{{2}^{n}-1}{{2}^{n-1}}$都成立

点评 此题主要考查归纳法的证明,归纳法一般三个步骤:(1)验证n=1成立;(2)假设n=k成立;(3)利用已知条件证明n=k+1也成立,从而求证,这是数列的通项一种常用求解的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在△ABC中,A、B、C是三角形的三内角,a、b、c是三内角对应的三边,已知b2,a2,c2成等差数列.
(1)求cosA的最小值;
(2)若a=2,当A最大时,△ABC面积的最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若复数z满足z=$\frac{10}{6-8i}$,(i为虚数单位),则z的虚部为(  )
A.4B.$\frac{4}{5}$C.-4D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知命题p:?x0∈R,使log2x0+x0=2017成立,命题q:?a∈(-∞,0 ),f(x)=|x|-ax(x∈R)为偶函数,则下列命题为真命题的是(  )
A.p∧qB.?p∧qC.p∧?qD.?p∧?q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.-150°的弧度数是(  )
A.-$\frac{5π}{6}$B.$\frac{4π}{3}$C.-$\frac{2π}{3}$D.-$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设等比数列{an}的公比q=2,前n项和为Sn,则$\frac{{S}_{4}}{{a}_{4}}$=(  )
A.2B.4C.$\frac{15}{8}$D.$\frac{17}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.数列{an}满足${a_1}+\frac{a_2}{2}+\frac{a_3}{2^2}+…+\frac{a_n}{{{2^{n-1}}}}={3^{n+1}}$,则数列{an}的通项公式为${a_n}=\left\{\begin{array}{l}9({n=1})\\{6^n}\;\;({n≥2})\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.对赋值语句的描述正确的是(  )
①可以给变量提供初值        
②将表达式的值赋给变量
③不能给同一变量重复赋值    
④可以给一个变量重复赋值.
A.①②③B.①②C.②③④D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.2017年4月14日,某财经频道报道了某地建筑市场存在违规使用未经淡化海砂的现象.为了研究使用淡化海砂与混凝土耐久性是否达标有关,某大学实验室随机抽取了60个样本,得到了相关数据如表:
混凝土耐久性达标混凝土耐久性不达标总计
使用淡化海砂25t30
使用未经淡化海砂s
总计4060
(Ⅰ)根据表中数据,求出s,t的值;
(Ⅱ)利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下认为使用淡化海砂与混凝土耐久性是否达标有关?
参考数据:
P(K2≥k00.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828
参考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.

查看答案和解析>>

同步练习册答案