精英家教网 > 高中数学 > 题目详情
若向量
a
=(1,-2),
b
=(2,1),
c
=(-4,-2),则下列说法中错误的是(  )
A、
a
b
B、向量
a
与向量
c
的夹角为90°
C、
b
c
D、对同一平面内的任意向量
d
,都存在一对实数k1,k2,使得
d
=k1
b
+k2
c
考点:数量积表示两个向量的夹角,平行向量与共线向量,平面向量的基本定理及其意义,平面向量数量积的运算
专题:平面向量及应用
分析:由向量的平行垂直关系和平面向量基本定理,逐个选项验证即可.
解答: 解:∵向量
a
=(1,-2),
b
=(2,1),
c
=(-4,-2),
a
b
=1×2-2×1=0,∴
a
b
,A正确;
同理可得
a
c
=1×(-4)-2×(-2)=0,∴
a
c
,B正确;
c
=-2
b
,∴
b
c
,C正确;
b
c
,∴
b
c
不能作基底,D错误.
故选:D
点评:本题考查平面向量的共线和垂直,以及平面向量基本定理,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知条件p:x2-3x-4≤0,条件q:x2-6x+9-m2≤0.若p是q的充分不必要条件,则m的取值范围是(  )
A、[-1,1]
B、[-4,4]
C、(-∞,-4]∪[4,+∞)
D、(-∞,-1]∪[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体三视图如图所示,则该几何体的体积为(  )
A、
2
3
B、1
C、
4
3
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面α,β,直线m,n,给出下列命题:
①若m∥α,n∥β,m⊥n,则α⊥β,②若α∥β,m∥α,n∥β,则m||n,③若m⊥α,n⊥β,m⊥n,则α⊥β,④若α⊥β,m⊥α,n⊥β,则m⊥n.
其中是真命题的是
 
.(填写所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(x?R,A>0,ω>0,0<φ<
π
2
)的部分图象如图所示P是图象的最高点,Q为图象与x轴的交点,O为坐标原点.若OQ=4,OP=
5
,PQ=
13

(1)求函数y=f(x)的解析式;
(2)将函数y=f(x)的图象向右平移2个单位后得到函数y=g(x)的图象,当x∈(-1,2)时,求函数h(x)=f(x)•g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

根据第五次全国人口普查的数据,截至2000年11月1日,北京市的常住人口总数为1381.9万,如果从2001年初开始,北京市把全市人口的年增长率控制在0.13%以内,到2008年举办奥运会时(按年底计算),北京市最多有多少常住人口?

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=log 
1
2
(x2-2x-8)的单调递增区间是
 
,单调递减区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a=log3
2
3
,b=log5
2
5
,c=log7
2
7
,则(  )
A、c>b>a
B、b>c>a
C、a>c>b
D、a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在圆心角为直角的扇形OAB区域中,M、N分别为OA、OB的中点,在M、N两点处各有一个通信基站,其信号的覆盖范围分别为以OA、OB为直径的圆,在扇形OAB内随机取一点,则此点无信号的概率是(  )
A、1-
2
π
B、
1
2
-
1
π
C、
1
2
+
1
π
D、
1
π

查看答案和解析>>

同步练习册答案