精英家教网 > 高中数学 > 题目详情
14.已知正四面体ABCD的棱长为$\sqrt{2}$,则其外接球的体积为(  )
A.$\frac{4}{3}$πB.$\frac{{\sqrt{2}}}{3}$πC.$\frac{{\sqrt{3}}}{2}$πD.

分析 抓住正四面体的特征,底面是正三角形,边长为$\sqrt{2}$,高线的投影在底面正三角形的重心上.外接球的球心在高线上,且到各个顶点的距离相等,构造直角三角形,求出R,即可求球的体积.

解答 解:
由题意:ABCD是正四面体,底面是正三角形,边长为$\sqrt{2}$,高线的投影在底面正三角形的重心上,则有BE=2EF;设AO=OB=R.
∵BCD是正三角形,边长为$\sqrt{2}$,
∴BF=$\sqrt{B{C}^{2}-C{F}^{2}}=\sqrt{2-(\frac{\sqrt{2}}{2})^{2}}=\frac{\sqrt{6}}{2}$;
∴BE=$\frac{\sqrt{6}}{2}×\frac{2}{3}$=$\frac{\sqrt{6}}{3}$;
AE=$\sqrt{A{B}^{2}-B{E}^{2}}$=$\sqrt{2-\frac{2}{3}}=\frac{2\sqrt{3}}{3}$;
0E=AE-R=$\frac{2\sqrt{3}}{3}-R$
∵△BEO是直角三角形,
∴R2=OE2+BE2,即${R}^{2}=(\frac{2\sqrt{3}}{3}-R)^{2}+(\frac{\sqrt{6}}{3})^{2}$.
解得:R=$\frac{\sqrt{3}}{2}$,
则球的体积V=$\frac{4}{3}π{R}^{3}$
=$\frac{\sqrt{3}}{2}π$
故选:C.

点评 本题考查正四面体的特征以及球的体积的求法,解题时要认真审题,注意空间思维能力的培养.是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.在平行四边形ABCD中,AC与BD交于点O,E是线段OD上一点,且DE=$\frac{1}{4}$OD,AE的延长线交CD于F,若$\overrightarrow{AC}=\overrightarrow a,\overrightarrow{BD}=\overrightarrow b$,则$\overrightarrow{AF}$=(  )
A.$\frac{3}{7}\overrightarrow a+\frac{4}{7}\overrightarrow b$B.$\frac{3}{7}\overrightarrow a-\frac{4}{7}\overrightarrow b$C.$\frac{4}{7}\overrightarrow a+\frac{3}{7}\overrightarrow b$D.$\frac{4}{7}\overrightarrow a-\frac{3}{7}\overrightarrow b$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.集合A={x|x<-1或x>2},B={x|0≤x≤2},则A∩(∁RB)=(  )
A.{x|x<2}B.{x|x<-1或x≥2}C.{x|x≥2}D.{x|x<-1或x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知全集U=R,A={x|x2-2x<0},B={x|x≥1},则A∩(∁UB)=(  )
A.{x|0<x<2}B.{x|0<x<1}C.{x|0<x≤1}D.{x|0<x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若经过原点的直线l与直线y=$\frac{{\sqrt{3}}}{3}$x+1的夹角为30°,则直线l的倾斜角是(  )
A.B.60°C.0°或60°D.60°或90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若集合A={x|(x-1)(x+2)>0},集合B={-3,-2,-1,0,1,2},则A∩B等于(  )
A.{0,1}B.{-3,-2}C.{-3,2}D.{-3,-2,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=(x-2)ex+ax2+x,a∈R.
(1)当$a=-\frac{1}{2}$时,求f(x)的单调区间;
(2)当x≤0时,f(x)≤-2总成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设f(x)=-2x3+bx2+cx+d(其中b,c,d∈R),且当k<-1或k>4时,方程f(x)-k=0只有一个实根;当-1<k<4时,方程f(x)-k=0有三个相异实根.现给出下列四个命题:
①f(x)-5=0的任一实根大于f(x)+5=0的任一实根.
②f(x)+2=0的任一实根大于f(x)-2=0的任一实根.
③f(x)-4=0和f′(x)=0有一个相同的实根.
④f(x)=0和f′(x)=0有一个相同的实根.
其中正确的命题有②③.(请写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知命题p:对于任意非零实数x,不等式m<$\frac{{x}^{4}-x^2+1}{{x}^{2}}$恒成立;命题q:函数f(x)=x2-2mx在区间(2,+∞)上是增函数,若命题p和命题q有且只有一个真命题,则实数m的取值范围是(  )
A.(1,2)B.[1,2]C.(-∞,1]D.(-∞,1)

查看答案和解析>>

同步练习册答案