精英家教网 > 高中数学 > 题目详情
3.若函数f(x)=sin(2x+φ)满足对一切x∈R,都有f(x)≥f($\frac{π}{6}$)成立,则下列关系式中不成立的是(  )
A.f(-$\frac{π}{12}$)=0B.f($\frac{π}{12}$)+f($\frac{3π}{4}$)=0C.f($\frac{π}{12}$)<f($\frac{2π}{3}$)D.f(0)>f(-$\frac{5π}{12}$)

分析 由题意可得,当x=$\frac{π}{6}$时,函数f(x)取得最小值,由此求得φ的值,可得函数的解析式,再利用诱导公式、特殊角的三角函数的值,判断各个选项中的不等式是否正确,从而得出结论.

解答 解:∵函数f(x)=sin(2x+φ)满足对一切x∈R,都有f(x)≥f($\frac{π}{6}$)成立,
∴当x=$\frac{π}{6}$时,函数f(x)取得最小值,即2•$\frac{π}{6}$+φ=2kπ-$\frac{π}{2}$,k∈Z,即φ=2kπ-$\frac{5π}{6}$,k∈Z,
故可取φ=-$\frac{5π}{6}$,此时,k=0,为整数,
∴f(x)=sin(2x-$\frac{5π}{6}$).
∴f(-$\frac{π}{12}$)=sin(-π)=-sinπ=0,故A成立;
∵f($\frac{π}{12}$)=sin(-$\frac{2π}{3}$)=-sin$\frac{2π}{3}$=-$\frac{\sqrt{3}}{2}$,f($\frac{3π}{4}$)=sin$\frac{2π}{3}$=$\frac{\sqrt{3}}{2}$,∴f($\frac{π}{12}$)+f($\frac{3π}{4}$)=0,故B成立;
又 f($\frac{2π}{3}$)=sin$\frac{2π}{3}$=$\frac{\sqrt{3}}{2}$,∴f($\frac{π}{12}$)<f($\frac{2π}{3}$),故C成立;
f(0)=sin(-$\frac{5π}{6}$)=-sin$\frac{5π}{6}$=-$\frac{1}{2}$,f(-$\frac{5π}{12}$)=sin0=0,故f(0)>f(-$\frac{5π}{12}$)不成立,
故选:D.

点评 本题主要考查正弦函数的最小值,特殊角的三角函数的值,诱导公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若函数f(x)=$\left\{\begin{array}{l}{alnx-{x}^{2}-2(x>0)}\\{x+\frac{1}{x}+a(x<0)}\end{array}$的最大值为f(-1),则实数a的取值范围(  )
A.[0,2e2]B.[0,2e3]C.(0,2e2]D.(0,2e3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=(x2-3)ex,则关于x的方程f2(x)-mf(x)-$\frac{12}{{e}^{2}}$=0的实根个数可能是(  )
A.3B.1C.3或5D.1或3或5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知方程lnx-kx=0有两个不相等的实数根,则实数k取值范围为(  )
A.(-∞,e-1B.(0,e-1C.(e,+∞)D.(0,e)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知ab=1(a,b>0),则$\frac{1}{a+1}$+$\frac{9}{b+9}$的最大值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=lnx-x2+x.
(1)求函数f(x)的单调递减区间;
(2)若在y轴右侧,函数h(x)=(a-1)x2+2ax-1的图象都在函数f(x)图象的上方,求整数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=4,|$\overrightarrow{a}$-$\overrightarrow{b}$|=5,|$\overrightarrow{a}$+$\overrightarrow{b}$|=5,求|$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知全集U={1,2,3,4,5},A={1,2,4},B={2,5},则A∩(∁UB)=(  )
A.{1,3,4}B.{1,4}C.{3,4}D.{1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.将某商场A,B两个品牌店在某日14:00-18:00四个时段(每个小时作为一个时段)的客流量统计并绘制成如图所示的茎叶图.
(1)若从B商场中任选2个时段的数据,求这2个时段的数据均多于A商场数据平均数的概率;
(2)从这8个数据中随机选取3个,设这3个数据中大于35的个数为X,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案