精英家教网 > 高中数学 > 题目详情
在各棱长都相等的三棱锥A-BCD中,二面角A-BC-D的余弦值等于(  )
A、
1
2
B、
1
3
C、
1
4
D、
3
4
考点:二面角的平面角及求法
专题:空间角
分析:取BC中点O,连结AO,DO,∠AOD是二面角A-BC-D的平面角,由此能求出二面角A-BC-D的余弦值.
解答: 解:如图,设三棱锥的棱长为a,
取BC中点O,连结AO,DO,
由题意知AO⊥BC,DO⊥BC,
∴∠AOD是二面角A-BC-D的平面角,
∵AO=DO=
a2-(
a
2
)2
=
3
2
a

∴cos∠AOD=
(
3
2
a)2+(
3
2
a)2-a2
2•
3
2
a•
3
2
a
=
1
3

∴二面角A-BC-D的余弦值是
1
3

故选:B.
点评:本题考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意余弦定理的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线2x+3y-3=0和4x+my+2=0互相平行,则两直线之间的距离是(  )
A、
7
13
26
B、
5
13
26
C、
4
13
13
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

直线ax-y+3=0与圆(x-1)2+(y-2)2=4相交于A、B两点,且弦AB的长为2
3
,则a=(  )
A、-1
B、0
C、
1
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

从学号为1~60的高一某班60名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是(  )
A、10,20,30,40,50
B、6,18,30,42,54
C、2,4,6,8,10
D、4,13,22,31,40

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z满足(2-i)z=4+3i(i为虚数单位),则|z-i|=(  )
A、
2
B、
3
C、2
2
D、2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

从装有n+1个球的口袋中取出m个球(0<m≤n,m,n∈N),共有C
 
m
n+1
种取法.在这C
 
m
n+1
种取法中,可以分成一个指定的球被取到和未被取到两类:一类是该指定的球未被取到,共有C
 
0
1
•C
 
m
n
种取法;另一类是该指定的球被取到,共有C
 
1
1
•C
 
m-1
n
种取法.显然C10•Cnm+C11•Cnm-1=C
 
m
n+1
,即有等式:C
 
m
n
+C
 
m-1
n
=C
 
m
n+1
成立.试根据上述思想,则有:Cnm+Ck1•Cnm-1+Ck2•Cnm-2+…+Ckk•Cnm-k(其中当1≤k<m≤n,k,m,n∈N)为(  )
A、C
 
m
n+k
B、C
 
m
n+k+1
C、C
 
m+1
n+k
D、C
 
k
n+m

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)图象上的任意一点P的坐标(x,y)满足条件x2>y2,则称函数f(x)具有性质S,那么下列函数中具有性质S的是(  )
A、f(x)=ex-1
B、f(x)=ln(x+1)
C、f(x)=sinx
D、f(x)=tanx

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列各图,并阅读图形下面的文字,像这样,10条直线相交,交点的个数最多是(  )
A、40B、45C、50D、55

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,点A(1,-2),B(a,-1),C(-b,0),且a>0,b>0.
(1)若点A,B,C在直线L上,求u=
1
a
+
2
b
的最小值,并求此时直线L的方程;
(2)若以线段AB,AC为邻边的平行四边形的两条对角线的长相等,且
OA
•(
AB
-
AC
)=5 求a,b的值.

查看答案和解析>>

同步练习册答案