【题目】如图,四棱锥
中,侧面
为等边三角形且垂直于底面
,
,
,
是
中点.
(1)证明:直线
平面
;
(2)点
在棱
上,且直线
与底面
所成角为
,求二面角
的余弦值.
![]()
【答案】(1)证明见解析;(2)
.
【解析】试题分析:(1)取
的中点
,连结
,通过证明
,利用直线与平面平行得判定定理证明即可;(2) 由已知得
,以
为坐标原点,
的方向为
轴正方向,
为单位长,建立空间直角坐标系
,由
与底面
所成的角为
,求得
的坐标,再求出平面
的一个法向量,由两法向量所成角的余弦值可求解二面角
的余弦值即可.
试题解析:(1)取
的中点
,连结
,
∵
是
中点
∴
, ![]()
由
,得![]()
又∵![]()
∴
,
,则四边形
为平行四边形
∴
,
又∵
平面
,
平面![]()
∴
平面
.
(2)由已知得
,以
为坐标原点,
的方向为
轴正方向,
为单位长,建立如图所示的空间直角坐标系
.
![]()
则
,
,
,
,
,
,
设
,则
,
,
∵
与底面
所成的角为
,而
是底面
的法向量,
∴
,
,即
.①
又
在棱
上,设
,则
,
,
,②
由①,②得
,
.
∴
,从而
,
设
是平面
的法向量,则
,即
,
∴可取
,于是
,
∴二面角
的余弦值为
.
科目:高中数学 来源: 题型:
【题目】某校高三数学竞赛初赛考试结束后,对考生成绩进行统计(考生成绩均不低于90分,满分150分),将成绩按如下方式分为六组,第一组.如图为其频率分布直方图的一部分,若第四、五、六组的人数依次成等差数列,且第六组有4人. ![]()
(1)请补充完整频率分布直方图,并估计这组数据的平均数M;
(2)现根据初赛成绩从第四组和第六组中任意选2人,记他们的成绩分别为x,y.若|x﹣y|≥10,则称此二人为“黄金帮扶组”,试求选出的二人为“黄金帮扶组”的概率P1;
(3)以此样本的频率当作概率,现随机在这组样本中选出3名学生,求成绩不低于120分的人数ξ的分布列及期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,函数
的最小值为
.
(1)求
;
(2)是否存在实数
同时满足下列条件:
①
;
②当
的定义域为
时, 值域为
?若存在, 求出
的值;若不存在, 说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学利用周末组织教职员工进行了一次秋季登山健身的活动,有N人参加,现将所有参加者按年龄情况分为[20,25),[25,30),[30,35),[35,40),[40,45),[45,50),[50,55)等七组,其频率分布直方图如下所示.已知[35,40)这组的参加者是8人. ![]()
(1)求N和[30,35)这组的参加者人数N1;
(2)已知[30,35)和[35,40)这两组各有2名数学教师,现从这两个组中各选取2人担任接待工作,设两组的选择互不影响,求两组选出的人中都至少有1名数学老师的概率;
(3)组织者从[45,55)这组的参加者(其中共有4名女教师,其余全为男教师)中随机选取3名担任后勤保障工作,其中女教师的人数为x,求x的分布列和均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
分别是椭圆
的左右顶点,
为其右焦点,
与
的等比中项是
,椭圆的离心率为
.
(1)求椭圆
的方程;
(2)设不过原点
的直线
与该轨迹交于
两点,若直线
的斜率依次成等比数列,求
的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产一种机器的固定成本(即固定投入)为 0.5 万元,但每生产100台时,又需可变成本(即另增加投入)0.25 万元.市场对此商品的年需求量为 500台,销售的收入(单位:万元)函数为 R(x)=5x-
x2(0≤x≤5),其中 x 是产品生产的数量(单位:百台).
(1)求利润关于产量的函数.
(2)年产量是多少时,企业所得的利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查每天微信用户使用微信的时间,某经销化妆品分微商在一广场随机采访男性、女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:
微信控 | 非微信控 | 合计 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
(1)根据以上数据,能否有60%的把握认为“微信控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人赠送营养面膜各1份,再从抽取的这5人中再随机抽取3人赠送200元的护肤品套装,记这3人中“微信控”的人数为X,试求X的分布列和数学期望.
参考公式:K2=
,其中n=a+b+c+d
参考数据:
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.321 | 3.840 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com